
   
www.ijsetr.com 

 
 

  
 

ISSN 2319-8885 

Vol.03,Issue.47  

December-2014,  

Pages:9478-9483 

  

                                                      Copyright @ 2014 IJSETR. All rights reserved. 

Apache Kafka: Next Generation Distributed Messaging System 
 KHIN ME ME THEIN

 

Ph.D Scholar, UCSY, Myanmar, E-mail: khinmemethein@gmail.com. 

 

Abstract: Apache Kafka is publish-subscribe messaging implemented as a distributed commit log, suitable for both offline and 

online message consumption. It is a messaging system initially developed at LinkedIn for collecting and delivering high 

volumes of event and log data with low latency. Message publishing is a mechanism for connecting various applications with 

the help of messages that are routed between them, for example, by a message broker such as Kafka. It acts as a kind of write-

ahead log that records messages to a persistent store and allows subscribers to read and apply these changes to their own stores 

in a system appropriate time-frame. Common subscribers include live services that do message aggregation or other processing 

streams, as well as Hadoop and data warehousing pipelines which load virtually all feeds for batch-oriented processing. 

Keywords: Publish-Subscribe Messaging, Distributed, Aggregation, Batch-Oriented.           

I. INTRODUCTION 

     In today's world, real-time information is continuously 

getting generated by applications (business, social, or any 

other type), and this information needs easy ways to be 

reliably and quickly routed to multiple types of receivers. 

Most of the time, applications that are producing 

information and applications that are consuming this 

information are well apart and inaccessible to each other. 

This, at times, leads to redevelopment of information 

producers or consumers to provide an integration point 

between them. Therefore, a mechanism is required for 

seamless integration of information of producers and 

consumers to avoid any kind of rewriting of an application 

at either end [4]. In the present big data era, the very first 

challenge is to collect the data as it is a huge amount of data 

and the second challenge is to analyze it. This analysis 

typically includes following type of data and much more: 

 User behavior data 

 Application performance tracing 

 Activity data in the form of logs 

 Event messages 

      Kafka is a solution to the real-time problems of any 

software solution, that is, to deal with real-time volumes of 

information and route it to multiple consumers quickly. 

Kafka provides seamless integration between information of 

producers and consumers without blocking the producers of 

the information and without letting producers know who the 

final consumers are. Kafka [2] is distributed and scalable, 

and offers high throughput. On the other hand, Kafka 

provides an API similar to a messaging system and allows 

applications to consume log events in real time. Kafka has 

been open sourced and used successfully in production at 

LinkedIn for more than 6 months. It greatly simplifies the 

infrastructure, since LinkedIn can exploit a single piece of 

software for both online and offline consumption of log data 

of all types. The rest of this paper is organized as follows. 

We show the related work of Kafka in Section 2. In Section 

3, we describe the architecture of Kafka and its design and 

about the zookeeper which needs to run Kafka. We describe 

our deployment of Kafka at console in Section 4. We discuss 

future work and conclude in Section 5. 

II. RELATED WORK 

   In a modern data architecture that is built on YARN -

enabled (Apache Hadoop NextGem MapReduce) Apache 

Hadoop [1], Kafka works in combination with Apache 

Storm, Apache Hbase and Apache Spark for real-time 

analysis and rendering of streaming data. Kafka can message 

geospatial data from fleet of long-haul trucks or sensor data 

from heating and cooling equipment in office buildings. 

Whatever the industry or use case, Kafka brokers massive 

message streams for low-latency analysis in Enterprise 

Apache Hadoop. Kafka is fully supported and included in 

HDP (HORTONWORKS DATA PLATFORM) today. 

Some of the companies that are using Apache Kafka in their 

respective use cases are as follow [4]: 

LinkedIn (www.linkedin.com): Apache Kafka is used at 

LinkedIn for the streaming of activity data and operational 

metrics. This data powers various products such as LinkedIn 

news feed and LinkedIn Today in addition to offline 

analytics systems such as Hadoop. 

DataSift (www.datasift.com/): At DataSift, Kafka is used as 

a collector for monitoring events and as a tracker of users' 

consumption of data streams in real time. 

Twitter (www.twitter.com/): Twitter uses Kafka as a part of 

its Storm— a stream-processing infrastructure. 



KHIN ME ME THEIN 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.47, December-2014, Pages: 9478-9483 

Foursquare (www.foursquare.com/): Kafka powers 

online-to-online and online-to-offline messaging at 

Foursquare. It is used to integrate foursquare monitoring 

and production systems with Foursquare, Hadoop-based 

offline infrastructures. 

Square (www.squareup.com/): Square uses Kafka as a bus 

to move all system events through Square's various 

datacenters. This includes metrics, logs, custom events, and 

so on. On the consumer side, it outputs into Splunk, 

Graphite, or Esper-like real-time alerting. 

III. KAFKA ARCHITECTURE AND DESIGN 

   Kafka is a distributed, partitioned, replicated commit log 

service. Kafka [3] maintains feeds of messages in categories 

called topics. We’ll call processes that publish messages to 

a Kafka topic are producers. And we’ll call processes that 

subscribe to topics and process the feed of published 

messages are consumers. Kafka is run as a cluster 

comprised of one or more servers each of which is called a 

broker. At a high level, producers send messages over the 

network to the Kafka cluster which in turn serves them up to 

consumers like this in Fig.1.  

   
Fig.1. Basic architecture of Kafka. 

 Producers publish messages to Kafka topics, and 

consumers subscribe to these topics and consume the 

messages. A server in a Kafka cluster is called a broker. For 

each topic, the Kafka cluster maintains a partition for 

scaling, parallelism and fault-tolerance. Each partition is an 

ordered, immutable sequence of messages that is 

continually appended to a commit log. The messages in the 

partitions are each assigned a sequential id number called 

the offset. Anatomy of a topic is described in Fig.2. 

 
Fig.2. Anatomy of a topic. 

 The offset is controlled by the consumer. The typical 

consumer will process the next message in the list, although 

it can consume messages in any order, as the Kafka cluster 

retains all published messages for a configurable period of 

time. This makes consumers very cheap, as they can come 

and go without much impact on the cluster, and allows for 

offline consumers like Hadoop clusters. Producers are able to 

choose which topic, and which partition within the topic, to 

publish the message to. Consumers assign themselves a 

consumer group name, and each message is delivered to one 

consumer within each subscribing consumer group. If all the 

consumers have different consumer groups, then messages 

are broadcasted to each consumer. Kafka can be used like a 

traditional message broker. It has high throughput, built-in 

partitioning, replication, and fault-tolerance, which makes it 

a good solution for large scale message processing 

applications. Kafka can also be used for high volume website 

activity tracking. Site activity can be published, and can be 

processed real-time, or loaded into Hadoop or offline data 

warehousing systems. Kafka can also be used as a log 

aggregation solution. Instead of working with log files, logs 

can be treated a stream of messages [5]. 

 Kafka is also an open source, distributed publish-

subscribe messaging system, mainly designed with the 

following characteristics: 

Persistent Messaging: To derive the real value from big 

data, any kind of information loss cannot be afforded. 

Apache Kafka is designed with O(1) disk structures that 

provide constant-time performance even with very large 

volumes of stored messages, which is in order of TB. 

High Throughput: Keeping big data in mind, Kafka is 

designed to work on commodity hardware and to support 

millions of messages per second. 

Distributed: Apache Kafka explicitly supports messages 

partitioning over Kafka servers and distributing consumption 

over a cluster of consumer machines while maintaining per-

partition ordering semantics. 

Multiple Client Support: Apache Kafka system supports 

easy integration of clients from different platforms such as 

Java, .NET, PHP, Ruby, and Python. 

Real Time: Messages produced by the producer threads 

should be immediately visible to consumer threads; this 

feature is critical to event-based systems such as Complex 

Event Processing (CEP) systems. 

 Kafka provides a real-time publish-subscribe solution, 

which overcomes the challenges of real-time data usage for 

consumption, for data volumes that may grow in order of 

magnitude, larger that the real data. Kafka also supports 

parallel data loading in the Hadoop systems [4]. The overall 

architecture of Kafka is shown in Fig.3. Since Kafka is 

distributed in nature, a Kafka cluster typically consists of 

multiple brokers. To balance load, a topic is divided into 

multiple partitions and each broker stores one or more of 



Apache Kafka: Next Generation Distributed Messaging System 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.46, December-2014, Pages: 9478-9483 

these partitions. Multiple producers and consumers can 

publish and retrieve messages at the same time [2]. In 

section 3.1, we describe about the producers and about the 

consumers is in section 3.2. And we describe about the 

Zookeeper in section 3.3. 

 
Fig.3. Kafka Architecture. 

A. Producers 

 Producers publish data to the topics of their choice. The 

producer is responsible for choosing which message to 

assign to which partition within the topic. This can be done 

in a round-robin fashion simply to balance load or it can be 

done according to some semantic partition function (say 

based on some key in the message) [3].  

B. Consumers 

 Messaging traditionally has two models:  queuing  and  

publish-subscribe. In a queue, a pool of consumers may read 

from a server and each message goes to one of them; in 

publish-subscribe the message is broadcast to all consumers. 

Kafka offers a single consumer abstraction that generalizes 

both of these – the consumer group [3]. Consumers label 

themselves with a consumer group name, and each message 

published to a topic is delivered to one consumer instance 

within each subscribing consumer group. Consumer 

instances can be in separate processes or on separate 

machines. If all the consumer instances have the same 

consumer group, then this works just like a traditional queue 

balancing load over the consumers. If all the consumer 

instances have different consumer groups, then this works 

like publish-subscribe and all messages ARE broadcast to 

all consumers. By having a notion of parallelism—the 

partition—within the topics, Kafka is able to provide both 

ordering guarantees and load balancing over a pool of 

consumer processes.  

   This is achieved by assigning the partitions in the topic to 

the consumers in the consumer group so that each partition 

is consumed by exactly one consumer in the group. By 

doing this we ensure that the consumer is the only reader of 

that partition and consumes the data in order. Since there are 

many partitions this still balances the load over many 

consumer instances. Note however that there cannot be 

more consumer instances than partitions. Fig.4 shows the 

example of consumer groups. Kafka only provides a total 

order over messages within a partition, not between 
different partitions in a topic. Per-partition ordering 
combined with the ability to partition data by key is 
sufficient for most applications. However, if you require a 
total order over messages this can be achieved with a 
topic that has only one partition, though this will mean 
only one consumer process. 

 
Fig.4. A two server Kafka cluster hosting four partitions 

(P0-P3) with two consumer groups. Consumer group A 

has two consumer instances and group B has four. 

C. Zookeeper 

     ZooKeeper is a centralized service for maintaining 

configuration information, naming, providing distributed 

synchronization, and providing group services. All of these 

kinds of services are used in some form or another by 

distributed applications. Each time they are implemented 

there is a lot of work that goes into fixing the bugs and race 

conditions that are inevitable. Because of the difficulty of 

implementing these kinds of services, applications initially 

usually skimp on them, which make them brittle in the 

presence of change and difficult to manage. Even when done 

correctly, different implementations of these services lead to 

management complexity when the applications are deployed 

[6]. ZooKeeper is also a high-performance coordination 

service for distributed applications. It exposes common 

services - such as naming, configuration management, 

synchronization, and group services - in a simple interface so 

you don't have to write them from scratch. You can use it 

off-the-shelf to implement consensus, group management, 

leader election, and presence protocols. And you can build on 

it for your own, specific needs [7]. Kafka provides the 

default and simple Zookeeper configuration file used for 

launching a single local Zookeeper instance. 

IV. TESTING KAFKA IN CONSOLE 

   In this section, we’ll describe how we test Kafka from 

command prompt in Ubuntu. First we need to download the 

Kafka that is suitable with Ubuntu. We use Kafka 0.8.1.1.tgz 

for this testing.  

Step 1: Start the Server 

    Kafka uses ZooKeeper. It serves as the coordination 

interface between the Kafka broker and consumers. So, 

firstly we need to start a ZooKeeper server if you don't 

already have one. You can use the convenience script 

http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern


KHIN ME ME THEIN 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.47, December-2014, Pages: 9478-9483 

packaged with kafka to get a ZooKeeper instance. By 

default, the Zookeeper server will listen on *:2181/tcp. First 

start the Zookeeper using the following command. 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1] 

#bin/zookeeper-server-start.shconfig/zookeeper. 

properties 

     You should get an output as shown in the following 

screenshot 1. 

Screen Shot 1: 

 

Now start the Kafka server using the following command: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-server-start.sh config/server.properties 

       You should get an output as shown in the following 

screenshot 2. 

Screen Shot 2: 

 

Step 2: Create A Topic 

     Let's create a topic named "kafkatopic" with a single 

partition and only one replica: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

# bin/kafka-topics.sh --create --zookeeper localhost:2181 -

-replication-factor 1 --partitions 1 --topic kafkatopic 

     You should get an output as shown in the following 

screenshot 3: 

Screen Shot 3: 

 

We can now see that topic if we run the list topic command: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-topics.sh --list --zookeeper localhost:2181 

    You should get an output as shown in the following 

screenshoot 4: 

Screen Shot 4: 

 

Step 3: Starting A Producer For Sending Messages 

 Kafka provides users with a command-line producer 

client that accepts inputs from the command line and 

publishes them as a message to the Kafka cluster. By default 

each new line entered is considered as a new message. The 

following command is used to start the console-based 

producer for sending the messages. 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-console-producer.sh--broker-list localhost:90 

92  --topic kafkatopic 



Apache Kafka: Next Generation Distributed Messaging System 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.46, December-2014, Pages: 9478-9483 

  You should get an output as shown in the following 

screenshot 5: 

Screen Shot 5: 

 

Step 4: Start A Consumer 

 Kafka also provides a command-line consumer client 

for message consumption. The following command is used 

for starting the console-based consumer. 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-console-consumer.sh—zookeeper local host: 

21 81  --topic kafkatopic --from-beginning 

    You should get an output as shown in the following 

screenshot 6: 

Screen Shot 6: 

 

   If you have each of the above commands running in a 

different terminal then you should now be able to type 

messages into the producer terminal and see them appear in 

the consumer terminal.  

Step 5: Setting Up A Multi-Broker Cluster 

 For Kafka, a single broker is just a cluster of size one, 

so nothing much changes other than starting a few more 

broker instances. But just to get feel for it, let's expand our 

cluster to three nodes (still all on our local machine). First we 

make a config file for each of the brokers: 

> cp config/server.properties config/server-1.properties  

> cp config/server.properties config/server-2.properties 

      Now edit these new files by using ―vi‖ command and set 

the following properties:  

config/server-1.properties: 

    broker.id=1 

    port=9093 

    log.dir=/tmp/kafka-logs-1 

 config/server-2.properties: 

    broker.id=2 

    port=9094 

    log.dir=/tmp/kafka-logs-2 

   The broker.id property is the unique and permanent name 

of each node in the cluster. We have to override the port and 

log directory only because we are running these all on the 

same machine and we want to keep the brokers from all 

trying to register on the same port or overwrite each other 

data. 

 We already have Zookeeper and our single node started, 

so we just need to start the two new nodes: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-server-start.sh config/server-1.properties & 

... 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

# bin/kafka-server-start.sh config/server-2.properties & 

... 

 Now create a new topic with two partitions and two 

replicas: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

# bin/kafka-topics.sh --create --zookeeper localhost:2181 -

-replication-factor 2 –partitions  2 --topic my-replicated-

topic 

 If we use a single producer to get connected to all the 

brokers, we need to pass the initial list of brokers, and the 

information of the remaining brokers is identified by 



KHIN ME ME THEIN 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.47, December-2014, Pages: 9478-9483 

querying the broker passed within broker-list, as shown in 

the following command to start the producer: 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

# bin/kafka-console-producer.sh –broker-list localhost: 

9093, localhost: 9094 –topic my-replicated-topic 

    For the consumer, use the previous command to consume 

messages. 

[root@ubuntu:/opt/kafka-2.8.0-0.8.1.1]  

#bin/kafka-console-consumer.sh --zookeeper local host: 

2181 --topic my-replicated-topic --from-beginning 

V. CONCLUSION AND FUTURE WORK 

   We present a system called Kafka for processing huge 

volume of a log data streams.  Kafka employs a pull-based 

consumption model that allows an application to consume 

data at its own rate and rewind the consumption whenever 

needed. It achieves much higher throughput than 

conventional messaging systems. It also provides integrated 

distributed support and can scale out. Later, we’ll test Kafka 

in API for both producer and consumer by using Scala 

Programming Language. 

VI. REFERENCES 

[1] http://hortonworks.com/hadoop/kafka/. 

[2]Jay Kreps, Neha Narkhede and Jun Rao, ―Kafka: a  

Distributed Messaging System for Log Processing‖, 

LinkedIn Corp. 

[3] http://kafka.apache.org.  

[4] Nishant Garg, ―Apache Kafka‖ , PACKT Publishing. 

[5]http://www.infoq.com/news/2013/12/apache-afka-

messaging-system. 

[6] http://zookeeper.apache.org/. 

[7] http://zookeeper.apache.org/doc/trunk/. 

http://hortonworks.com/hadoop/kafka/
http://kafka.apache.org/
http://www.infoq.com/news/2013/12/apache-afka-messaging-system
http://www.infoq.com/news/2013/12/apache-afka-messaging-system

