
 
      

www.semargroup.org, 

www.ijsetr.com 

 
 

     
 

ISSN 2319-8885 

Vol.03,Issue.20         

September-2014,       

Pages:4304-4307 

  

Copyright @ 2014 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved. 

Load Rebalancing for Distributed File System in Clouds 
GALWAH TALAL SAMI

1
, DR.B.PADMAJA RANI

2
 

1
PG Scholar, Dept of CSE, JNTUH College of Engineering, Hyderabad, India, E-mail: galwatalal@gmail.com. 

2
Prof, Dept of CSE, JNTUH College of Engineering, Hyderabad, India.  

 

Abstract: Distributed file systems are key building blocks for cloud computing applications based on the MapReduce 

programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned 

into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. 

However, in a cloud computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. 

Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is, 

the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems in production 

systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a large-scale, failure-

prone environment because the central load balancer is put under considerable workload that is linearly scaled with the system 

size, and may thus become the performance bottleneck and the single point of failure. In this project, a fully distributed load 

rebalancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared against a centralized 

approach in a production system and a competing distributed solution presented in the literature. The simulation results indicate 

that our proposal is comparable with the existing centralized approach and considerably outperforms the prior distributed 

algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The performance of our proposal 

implemented in the Hadoop distributed file system is further investigated in a cluster environment. 

Keywords: Load Rebalancing, Cost, Cloud Computing. 

I. INTRODUCTION 

    Cloud Computing (or cloud for short) is a compelling 

technology. In clouds, clients can dynamically allocate their 

resources on-demand without sophisticated deployment and 

management of resources. Key enabling technologies for 

clouds include the MapReduce programming paradigm[1] , 

distributed  file  systems  virtualization and so forth[2][3]. 

These techniques emphasize scalability, so clouds can be 

large in scale, and comprising entities can arbitrarily fail and 

join while maintaining system reliability. Distributed file 

systems are key building blocks for cloud computing 

applications based on the MapReduce programming 

paradigm. In such file systems, nodes simultaneously serve 

computing and storage functions; a file is partitioned into a 

number of chunks allocated in distinct nodes so that 

MapReduce tasks can be performed in parallel over the 

nodes. For example, consider a word count application that 

counts the number of distinct words and the frequency of 

each unique word in a large file. In such an application, a 

cloud partitions the file into a large number of disjointed and 

fixed-size pieces (or file chunks) and assigns them to 

different cloud storage nodes (i.e., chunk servers). Each 

storage node (or node for short) then calculates the 

frequency of each unique word by scanning and parsing its 

local file chunks. In  a distributed file system, the load of a 

node is typically proportional to the number of file chunks 

the node possesses[3] . Because the files in a cloud can be 

arbitrarily created, deleted, and appended, and nodes can be 

up-graded, replaced and added in the file system, the file 

chunks are not distributed as uniformly as possible among 

the nodes. 

     In this paper, we are interested in studying the load 

rebalancing problem in distributed file systems specialized 

for large-scale, dynamic and data-intensive clouds. (The 

terms “rebalance” and “balance” are interchangeable in this 

project.) Such a large-scale cloud has hundreds or thousands 

of nodes (and may reach tens of thousands in the future). 

Our objective is to allocate the chunks of files as uniformly 

as possible among the nodes such that no node manages an 

excessive number of chunks. Additionally, we aim to reduce 

network traffic (or movement cost) caused by rebalancing 

the loads of nodes as much as possible to maximize the 

network bandwidth available to normal applications. 

Moreover, as failure is the norm, nodes are newly added to 

sustain the overall system performance, resulting in the 

heterogeneity of nodes. Exploiting capable nodes to improve 

the system performance is, thus, demanded. 

II. LOAD REBALANCING PROBLEM 

       A node is light if the number of modules it hosts is 

smaller than the threshold as well as, a heavy node manages 

the number of modules greater than threshold. A large-scale 

distributed file system is in a load-balanced state if each 

mailto:galwatalal@gmail.com


GALWAH TALAL SAMI, DR.B.PADMAJA RANI 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.20, September-2014, Pages: 4304-4307 

module server hosts no more than A modules. In our 

proposed algorithm, each module server node I first estimate 

whether it is under loaded (light) or overloaded (heavy) 

without global knowledge. This process repeats until all the 

heavy nodes in the system become light nodes. In Proposed 

system, file downloading or uploading with the help of the 

centralized system. Centralized system will be sharing the 

file (uploading and downloading). First of all we are going to 

notice the lightest node to   require the set of   modules from   

heaviest node. Thus we will do the method while not failure. 

Load equalization may be a technique to distribute 

employment across several computers or network to realize 

most utilization of resources economical output, reducing 

latency, and take away overload.  

     The load equalization service is sometimes provided by 

dedicated code or hardware, like a multilayer switch or name 

server. During this project we have a tendency to use Load   

rebalancing formula. Then identical method is dead to 

unleash the additional load on following heaviest node 

within   the system. Then we are going to once more notice 

the heaviest and   lightest nodes,   such a method repeats 

iteratively till there's not the heaviest. We consider a large-

scale distributed file system consisting of a set of chunk 

servers V in a cloud, where the cardinality of V is . 

Typically, n can be 1,000, 10,000, or more. In the system, a 

number of files are stored in the n chunk servers. First, let us 

denote the set of files as F. Each file is partitioned into 

a number of disjointed, fixed size chunks denoted by  . 

For example, each chunk has the same size, 64 Mbytes, in 

Hadoop HDFS [3]. Second, the load of a chunk server is 

proportional to the number of chunks hosted by the server 

[3]. Third, node failure is the norm in such a distributed 

system, and the chunk servers may be upgraded, replaced 

and added in the system.  

Fig.1. An example illustrates the load rebalancing 

problem, where (a) an initial distribution of chunks of six 

files f1, f2, f3, f4, f5, and f6 in three nodes N1, N2, and 

N3, (b) files f2 and f5 are deleted, (c) f6 is appended, and 

(d) node N4 joins. The nodes in (b), (c), and (d) are in a 

load-imbalanced state. 

      Finally, the files in F may be arbitrarily created, deleted, 

and appended. The next effect results in file chunks not 

being uniformly distributed to the chunk servers. Fig.1. 

illustrates an example of the load rebalancing problem with 

the assumption that the chunk servers. 

     Let  be the ideal number of Chunks that any Chunk 

server  is required to manage in any system-wide 

load-balanced state that is, 

                                                                      (1) 

      Then, our load rebalancing algorithm aims to minimize 

the load imbalance factor in each chunk server i as follows: 

                                                                           (2) 

where Li denotes the load of node i (i.e., the number of file 

chunks hosted by i) and represents the absolute value 

function. Note that “chunk servers” and “nodes” are inter 

changeable in this project. 

Theorem 1: The load rebalancing problem is NP-hard. 

Proof: By restriction, an instance of the decision version of 

the load rebalancing problem is the knapsack problem [16]. 

That is, consider any node . i seeks to store a subset of 

the file chunks in F such that the number of chunks hosted 

by i is not more than A, and the “value” of the chunks hosted 

is at least , which is defined as the inverse of the sum of the 

movement cost caused by the migrated chunks. To simplify 

the discussion, we first assume a homogeneous environment, 

where migrating a file chunk between any two nodes takes a 

unit movement cost and each chunk server has the identical 

storage capacity. However, we will later deal with the 

practical considerations of node capacity heterogeneity and 

movement cost based on chunk migration in physical 

network locality. We implement the proposed system in this 

paper in four modules and when we implemented these 

modules The load of each virtual server is stable over the 

timescale when load balancing is performed. Load balancing 

is performed in proximity-aware manner, to minimize the 

overhead of load movement (bandwidth usage) and allow 

more efficient and fast load balancing. 

III. MODULES 

 Chunk creation 

 DHT formulation 

 Load balancing algorithm 

 Replica management  

      A file is partitioned into a number of chunks allocated in 

distinct nodes so that Map Reduce Tasks can be performed 

in parallel over the nodes. The load of a node is typically 

proportional to the number of file chunks the node possesses. 

Because the files in a cloud can be arbitrarily created, 

deleted, and appended, and nodes can be upgraded, replaced 

and added in the file system, the file chunks are not 

distributed as uniformly as possible among the nodes. so we 



Load Rebalancing for Distributed File System in Clouds 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.20, September-2014, Pages: 4304-4307 

 allocate the chunks of files as uniformly as possible among 

the nodes such that no node manages an excessive number of 

chunks and after we partition the files we arrange the chunks 

files structured network based as distributed hash table 

(DHT) discovering a file chunk can simply refer to rapid key 

lookup in DHTs, given that a unique handle (or identifier) is 

assigned to each file chunk. DHTs enable nodes to self-

organize and Repair while constantly offering lookup 

functionality in node dynamism, simplifying the system 

provision and management. The chunk servers in our 

proposal are organized as a DHT network. Typical DHTs 

guarantee that if a node leaves, then its locally hosted chunks 

are reliably migrated to its successor; if a node joins, then it 

allocates the chunks whose IDs immediately precede the 

joining node from its successor to manage   

        The hash functtion returns a unique identifier for a 

given files path name string and chunk index example : 

identifier of the first and third chunks of file 

("user/jonh/tmp/a.log) are respictivly ("user/jonh/tmp/a.log 

,0") and ("user/jonh/tmp/a.log ,2"). In our proposed 

algorithm, each chunk server node I first estimate whether it 

is under loaded (light) or overloaded (heavy) without global 

knowledge. A node is light if the number of chunks it hosts 

is smaller than the threshold.  Load statuses of a sample of 

randomly selected nodes. Specifically, each node contacts a 

number of randomly selected nodes in the system and builds 

a vector denoted by V. A vector consists of entries, and each 

entry contains the ID, network address and load status of a 

randomly selected node. After that the replica management 

so we can replicate the uploaded file to server. 

IV. CONCLUSION & FUTURE WORK 

     In this paper we eliminated the dependence on central 

node and balance the loads of nodes, we minimizing the 

movement cost as much as possible, while taking the 

advantage of physical network locality also exploits capable 

node to improve the overall system performance. In the 

absence of representative real workloads (i.e., the 

distributions of file chunks in a large scale storage system) in 

the public domain, we have investigated the performance of 

our proposal and compared it against competing algorithms 

through synthesized probabilistic distributions of file chunks. 

Emerging distributed file systems in production systems 

strongly depend on a central node for chunk reallocation and 

remarkably outperform the distributed algorithm in terms of 

load imbalance factor, movement cost. This dependence is 

clearly inadequate in a large-scale, failure-prone environ-

ment because the central load balancer is put under 

considerable workload that is linearly scaled with the system 

size, and may thus become the performance bottleneck and 

the single point of failure comparing with our algorithm; a 

fully distributed load rebalancing algorithm is presented to 

cope with the load imbalance problem. The load rebalancing 

problem in distributed file systems specialized for large-

scale, dynamic and data-intensive clouds. Such a Large-scale 

cloud has thousands or tens of thousands of nodes in the 

future. We can also append some security to our data that 

uploaded and downloaded.  

V. REFERENCES 

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data 

Processing on Large Clusters,”  Proc. Sixth Symp. Operating 

System Design and Implementation (OSDI ’04), pp. 137-

150, Dec. 2004. 

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google 

File System,” Proc. 19th ACM Symp. Operating Systems 

Principles (SOSP’03), pp. 29-43, Oct. 2003. 

[3] Hadoop Distributed File System, http://hadoop. 

apache.org/hdfs/, 2012. 

[4] VMware, http://www.vmware.com/, 2012. 

[5] Xen, http://www.xen.org/, 2012. 

[6] Apache Hadoop, http://hadoop.apache.org/, 2012. 

[7] Hadoop Distributed File System “Rebalancing Blocks,”  

[8] S. Mohammad, S. Breß, and E. Schallehn, “Cloud Data 

Management: A Short Overview and Comparison of Current 

Approaches,” Proc. 24th GI-Workshop Foundations of 

Databases (Grundlagen von Datenbanken), 2012.  

[9] Apache Hadoop, http://hadoop.apache.org/, 2013.  

[10] P.Jamuna and R.Anand Kumar “Optimized Cloud 

Computing Technique To Simplify Load 

Balancing”International Journal of Advanced Research in 

Computer Science and Software Engineering, Volume 3, 

Issue 11,November 2013.  

[11] Kokilavani .K, Department Of Pervasive Computing 

Technology, Kings College Of Engineering, Punalkulam, 

Tamil nadu “Enhance load balancing algorithm for 

distributed file system in cloud” International Journal of 

Engineering and Innovative Technology (IJEIT) Volume 3, 

Issue 6, December 2013  

[12] Hadoop Distributed File System “Rebalancing 

Blocks,” http:// 

developer.yahoo.com/hadoop/tutorial/module2.html#rebala

ncing,2012  

[13] ChahitaTanak, Rajesh Bharati “Load Balancing 

Algorithm for DHT Based Structured Peer to Peer 

System”International Journal of Emerging Technology and 

Advanced Engineering (ISSN 2250-2459, ISO 9001:2008 

Certified Journal, Volume 3, Issue 1, January 2013)  

[14] QuangHieu Vu, Member, IEEE, Beng Chin Ooi, 

Martin Rinard, and Kian-Lee Tan  “Histogram-Based 

Global Load Balancing in Structured Peer-to-Peer Systems” 

IEEE  transaction on knowledge and data engineering,vol. 

21, no. 4, April2009. 

[15] D. Karger and M. Ruhl, “Simple Efficient Load 

Balancing Algorithms for Peer-to-Peer Systems,” Proc. 16th 

ACM Symp. Parallel Algorithms and Architectures (SPAA 

’04), pp. 36-43, June 2004. 

[16] M.R. Garey and D.S. Johnson, Computers and 

Intractability: A Guide to the Theory of NP-Completeness. 

W.H. Freeman and Co., 1979. 

 

 



GALWAH TALAL SAMI, DR.B.PADMAJA RANI 

International Journal of Scientific Engineering and Technology Research 

Volume.03, IssueNo.20, September-2014, Pages: 4304-4307 

Author Profile: 

Galwah Talal  Sami, Al Mansour 

University Collage, B sc. Software 

Engineering  on july 2006, Baghdad- 

Iraq, PG Scholar, Dept of CSE, 

JNTUH College of Engineering, 

Hyderabad, India,  

E-mail: galwatalal@gmail.com. 

mailto:galwatalal@gmail.com

	Keywords: Load Rebalancing, Cost, Cloud Computing.
	I. INTRODUCTION

