

International Journal of Scientific Engineering and Technology Research

ISSN 2319-8885 Vol.05,Issue.41 November-2016, Pages:8563-8569

Analysis & Design of Commercial Building (C+G+15) By Shear Wall Design and Optimization using E-Tabs

AGEPATI VENKATA GANESH¹, MUJAHID AHMED²

¹PG Scholar, Dept of Civil Engineering, Geethanjali College of Engineering and Technology, Nannur, Kurnool (Dt), AP, India, E-mail: avgk0101@gmail.com.

²Asst Prof & HOD, Dept of Civil Engineering, Geethanjali College of Engineering and Technology, Nannur, Kurnool(Dt), AP, India, E-mail: avgk0101@gmail.com.

Abstract: The main objective of this project is to check and compare the seismic response of multi-storied building for different location of shear wall, so that one can choose the best alternative for construction in earthquake-prone area. Different location of shear wall in R.C. Building will be modeled in E-TABS software and the results in terms of natural period, frequency, storey displacement, storey drift, storey shear is compared. Looking to the past records of earthquake, there is increase in the demand of earthquake resisting building which can be fulfilled by providing the shear wall systems in the building. Also due to the major earthquakes in the recent pats the codal provisions revised and implementing more weight age on earthquake design of structure. The decision regarding provision of shear wall to resist lateral forces play most important role in choosing the appropriate structural system for given project. Generally structures are subjected to two types of loads i.e. Static and Dynamic. Static loads are constant while dynamic loads are varying with time. In majority civil structures only static loads are considered while dynamic loads are not calculated because the calculations are more complicated. This may cause disaster particularly during Earthquake due to seismic waves. By providing shear wall in multi-storied building we can resist seismic waves of earthquake. The loads are calculated by E-TABS software by providing shear walls at various parts of building.

Keywords: E-TABS Software, R.C. Building, Static Loads, Dynamic Loads.

I. INTRODUCTION

The objective of structural design is to plan a structure which meets the basic requirements of structural science and those of the user. The basic requirements of structural design are safety serviceability, durability and economy. In this project work it is proposed to design a multistoried residential building consisting of 4 floors. Each floor consists of 4 flats. The building is served by one stair case. The rapid increase in population and Industrial growth and of shelter there is considerable rise in the price of shelter there is considerable rise in the price of city land and as the space is limited, horizontal expansion is difficult. Hence vertical expansion has become compulsory. This has led to the conception of apartments or flats. An apartment consists of 3 to 7 storeys and each storey may accommodate 2 to 4 resentments. The land and other amenities of apartments are shared by all the occupants. Multi storeyed building has been broadly classified into five types

- Load bearing constructions.
- Composite Constructions.
- Framed Constructions.
- Reinforced Concrete framed Constructions.
- Steel framed Constructions.

The first method has got the limitation that it will be economical only up to 2 to 3 storeys. By means of composite constructions technique, the economy is achieved if the number is in between 3 to 5. Any building having more than 6 storey's has to be dealt by means of framed constructions building having more than 6 storeys has to be dealt by means of framed constructions. Structural design is an art and science of designing serviceable and durable structures with economy and elegance. The entire process of structural planning and design requires not only imagination and conceptual thinking but also sound knowledge of science and structural engineering, knowledge of practical aspects such as relevant design codes and bye-laws backed up by example experience in tuition and judgments. Construction is an ultimate objective. An engineer is key person for successful completion of any kind of project undertaken. Hence he should adopt all means to reduce cost of project to minimum, without unduly reducing the serviceability aspect of the project. An engineering structure is an assembly of members for elements transferring the load and providing a form, space, enclosure and or a cover to serve the desired function. The objective of structural design is to plan a structure which meets the basic requirements such as serviceability, safety, durability, economy, aesthetic beauty, feasibility, practicability and acceptability.

The purpose of structural design is, providing a safe structure with user's requirements. The design should evolve a structural solution for safety and serviceability throughout the design life, which gives the greatest overall economy for the first cost and for maintenance cost. Satisfactory design must ensure the achievement an acceptable probability that the specified life of a structure is not curtailed permanently due to attainment of an unsatisfactory serviceability condition called "LIMIT STATE". The acceptable probability should be chosen in such a way that a satisfactory balance is achieved between the cost of a possible structure and serviceability failure. It is a concept including some constants which are arrived at, after a series of experimentation and also out of experience of many senior engineers, architects etc. Limit states are concerned with structural safety and serviceability and covers all forms of failure. A structure could be rendered unit in many ways and these factors are conveniently grouped into main categories.

- Ultimate Limit State: Collapse of the structure due to normal or severe loading on the occurrence of catastrophic events like earthquakes etc.
- Serviceability Limit State: Deflection, cracking and vibration.
- **Other Limit States:** Fatigue, durability, fire resistance, lighting etc.

It is often possible that a given structure is required to satisfy one or more limit states simultaneously. The usual approach then is to design on the basis of the most critical limit states and check for the other limit states. Many times, satisfying one of one limit state would satisfy other limit states. For e.g., a structure is designed to keep the limit states for cracking within acceptable value, the limit for durability is also simultaneously satisfied. The concept of limit state provides a rational approach taking into account, variations in material strength and loads. This is in fact a rationalization of the ultimate load. Four reasons to justify the design of structures by limit state method are:

- Concept of separate partial safety factors of loads of different combinations in the two limits state methods.
- Concept of separate partial safety factors of materials depending on their quality control during preparation. Thus, γ_m for concrete is 1.5 and the same for steel is 1.15. This is more logical than one arbitrary value in the name of safety factor.
- A structure designed by employing limit state method of collapse and checked for other limit states will ensure the strength and stability requirements at the collapse.

III. DESIGN OF SLABS

A. General

A Slab is a flat, two dimensional planar, structural element having thickness small compared to its other two directions. It provides a working flat surface of covering shelter in buildings. It supports mainly transverse loads and transfers them to supports primarily by bending action in one or more directions. The R.C.C. slab is essentially a bending moment, like a beam, though it differs from beam with respect to following:

- The bending is in more than one vertical plane.
- The slab is designed as a strip of 1m wide.
- Shear stresses are usually low and shear reinforcement is not provided. However it is critical in flat slabs.
- Distribution steel is provided right angles to main flexural reinforcement to take care of temperature and shrinkage stresses.

B. Method of Analysis

The behavior and strength of slab depends upon, the shape and geometry (span), support and boundary conditions, loading level (service load, ultimate load) the state stress (elastic, in elastic, plastic). It may be noted that analysis of slabs is extremely difficult due to number of variables stated above with the result that rigorous or extract method are not available and therefore analytical, semi empirical methods are developed (IS 456-2000) allow design based on experimental investigations.

C. Classifications of Slabs

Slabs are classified on the basis of the following:

- Shape (rectangular, circular & other shapes).
- Support and boundary conditions (single span) slab known as one slabs, slabs supported on 4 edges known as two way slab, overhanging or cantilever slabs, simply supported slabs, slabs fixed or continuous at one or both ends.
- Type of support: simply supported on walls, slab cast monolithically with the supporting beams, slabs supported directly on columns (flat slabs).
- Spanning direction: simply supported slabs, slabs fixed or continuous at one or both ends.
- Use (roof slab, floor slab, wall slab, foundation slab etc).
- Sectional configuration: solid slab, ribbed plate, waffle plate, stiffened plate, corrugate plate, folded plate). Solid slab is a flat horizontal plate without ribs or stiffness). This is the most common type of slab.

Selection of suitable method for design of slab and classification of slabs for this project: I.S code method which is described in Annex-D of the code IS 456-2000 is selected because of its simplicity and adaptability. Limit state method is used for design of slabs. Clause 24.4, 37.1.2 of IS code states, for analysis of slabs spanning in two directions at right angles yield line theory or any other acceptable method may be used. Alternatively the provisions given in Annex-D may be followed. The slabs are classified according to boundary conditions, ratio of Ly/Lx, loading and span.

III. DESIGN OF BEAMS

A. General

Beam is a horizontal structure member subjected to transverse loads. When load acts on the beam it bends. For simply supported beam compression acts at the two fiber and tension acts at bottom and vice versa for cantilever beam. Beam has two axes:

- Longitudinal axis and
- Transverse axis.

Analysis & Design of Commercial Building (C+G+15) By Shear Wall Design and Optimization Using E-Tabs

In the cross section the load acts at the transverse axis, and the beam is subjected to shear force and bending moment only. If load is acting eccentrically with transverse axis then the beam is subjected to shear force, mending moment and torsion. There are two ways to solve the problem. First, we may increase the depth of the beam, which may not be feasible in many situations. In those cases, it is possible to increase both the compressive and tensile forces of the beam by providing steel reinforcement in compression face and additional reinforcement in tension face of the beam without increasing the depth. The reinforced concrete beam should be able to resist tensile, compressive & shear stresses induced in it by the loads on the beam. Concrete is fairly strong in compression but very weak in tension. Plain concrete beams are thus limited in carrying capacity by the low tensile strength. Steel is very strong in tension thus the tensile weakness of concrete is overcome by the provision of reinforcing steel in the tension zone to make a reinforced concrete beam. The beam & slabs in concrete structures are cast monolithic. Hence a structure becomes a slab which is stiffened by concrete ribs in which intermediate beams act as T- beams & beams around staircase, support frames, openings act as L-beams.

The portion of slabs that act as flange of T or L beam depends on its thickness & span. The flange of the T beam provides the necessary resistance to compression while the vertical ribs provide the depth & hence the necessary lever arm. The width of the rib must be such as to accommodate the tensile reinforcement. A certain portion of the slab on either slab may be considered forming the compression flange. If the supporting beam happens to be an end beam, the flange of the beam is present only on the side of the beam in such a case it is called an L-beam. The necessity of providing steel in the compression region arises due to two main reasons:

- The main reinforcement of a singly reinforced beam cannot be increased by more than 25% of balanced section by increasing steel only on tension side.
- At the support of the continuous beam the bending moment changes its sign. Such a situation may also arise in the design of a ring beam.

The beams may be singly reinforced or doubly reinforced. In case of singly reinforced beam the main reinforcement is provided near the face of the beam subjected to tension while in the case of a doubly reinforced beam, main reinforcement is provided near the face of the beam subjected to tension & compression. A doubly reinforced beam is generally provided in the following situations:

- When the depth & breadth of the beam are restricted & it has to resist greater bending moment than a singly reinforced beam of that section would do.
- When the beam is continuous over several supports, the section of the beam at the support is usually designed as a doubly reinforced section.
- When the member is subjected to eccentric loading.

Effective Span: Since the frame is analyzed as continuous frame the effective span is the distance between the centers of supporting members.

B. Guidelines for Finalizing the Beam Positions

- Normally beams shall be provided below all the walls.
- Beams shall be provided for supporting staircase fights at floor levels and at mid landing levels.
- Beams should be positioned so to restrict the slab thickness, to 15 cm, satisfying the deflection criteria. To achieve this, secondary beams shall be provided where necessary.
- As far as possible, cantilever beams should not be projected from beams, to avoid torsion.
- Beams of equal depths shall be provided on both side of the expansion joint from aesthetical point of view.
- Where secondary beam are proposed to reduce the slab thickness and to form a grid of beams, the secondary beams shall preferably be provided of lesser depth than the depth of supporting beams so that main reinforcement of secondary beams shall always pass above the main beams.
- In toilet block provide minimum number of secondary beams so that casting slabs and beam will be simple. 'No secondary beam' condition would be ideal.
- Beams which are required to give a planer look from the underside shall be provided as Inverted Beams, e.g. canopies. Alternatively hidden beams inside the slab having the same depth as thickness of slab may be adopted. Such hidden beams can be provided in toilet blocks, under partition wall etc. where a cluster of beams can be avoided.

C. Load Imposed On a Beam

Load on beam comprises of:

- Dead load from slab on either side
- Live load from slab on either side
- Load from walls on the beams.
- Load of the beam itself

D. Dispersion of Load of Slab on Beam

The load of the slab is dispersed on the supporting beam in accordance with the clause 24.5 of code which states that the load on beams supporting solid spans, spanning in two directions at right angles & supporting uniformly distributed loads, may be assumed in accordance. In the following pages the load on the supporting beam is determined by adopting simplified formula. Since the loaded area is trapezoidal & triangular in section, the calculation of load is rather cumbersome, that is why simplified formula has to be adopted. Equivalent uniformly distributed load B.M's are calculated by using the following formula for the longer span beam which produces the same B.M's of trapezoidal load for longer span beam. For one way slab which are resting over two opposite supports, the load carried by each supporting beam is given as load on support i.e. $W_s L_x/2$ /m run.

IV. ANALYSIS RESULTS

This chapter provides analysis results

	. Structure Results TABLE I: Base Reactions									
Load Case/Combo	FX kN	FY	FZ	MX kN-m	MY kN-m	MZ kN-m	X m	Y m	Z m	
Dead	1.977E-06	0	128272.1999	1499397	-2496665	-2.444E-05	0	0	0	
Live	0	0	34196.2068	399753.6575	-677663	0	0	0	0	
wiky, 1	-1588.7016	0	0	0	-36446.9243	18571.9215	0	0	0	
wiky, 2	0	-2645.3444	0	60687.7132	-6.062E-07	-51491.6283	0	0	0	
<mark>wl</mark> -xy 1	0	2645.3444	0	-60687.7132	6.063E-07	51491.6283	0	0	0	
₩-xy 2	-1588.7016	0	0	0	-36446.9243	18571.9215	0	0	0	
eax.	-1385.5171	0	0	0	-44744.6735	16195.1822	0	0	0	
eqy.	0	-1341.528	0	43324.0678	0	-26512.332	0	0	0	
Load Case/Combo	FX kN	FY kN	FZ kN	MX kN-m	MY kN-m	MZ kN-m	X m	Y m	ž	
DCon2	2.951E-06	0	243702.610	1 2848726	-4761492	-3.649E-05	0	0		

B. Story Results Table

TABLE II: Story Forces

Story	Load Case/Combo	Location	P KN	VX KN	VY KN	T KN-m	MX kN-m	MY KN-m
Story14	DCon2	Тор	14540.6423	0	0	0	169980.1088	-283207
Story14	DCon2	Bottom	17409.1181	0	0	0	203499.9847	-340134
Story13	DCon2	Ταρ	31949.7605	0	0	0	373480.0935	-623341
Story13	DCon2	Bottom	34818.2363	0	0	0	406999.9694	-680268
Story12	DCon2	Тор	49358.8788	0	0	-5.371E-07	576980.0782	-963475
Story12	DCon2	Bottom	52193.248	0	0	-5.283E-07	610114.1522	-1019878
Story11	DCon2	Тар	66733.8883	0	0	-8.18E-07	780094.261	-1303086
Story11	DCon2	Bottom	69603.1169	0	0	-8.064E-07	813822.8351	-1360024
Story10	DCon2	Тор	84143.7592	2.949E-08	0	-8.646E-05	983602.7439	-1643231
Story10	DCon2	Bottom	87012.8599	2.949E-06	0	-8.646E-05	1017130	-1700168
Story9	DCon2	Тор	101553.5022	2.985E-06	0	-8.69E-05	1187110	-1983375
Story9	DCon2	Bottom	104423.1747	2.984E-06	0	-8.689E-05	1220644	-2040320
Story8	DCon2	Ταρ	118963.8171	2.969E-06	0	-3.67E-05	1390624	-2323527
Story8	DCon2	Bottom	121834.0718	2.969E-06	0	-8.671E-05	1424165	-2380481
Story7	DCon2	Тор	136374.7141	2.966E-06	0	-3.667E-05	1594145	-2663689
Story7	DCon2	Bottom	139243.7721	2.966E-06	0	-8.668E-05	1627673	-2720624
Story6	DCon2	Тор	153784.4144	2.963E-06	0	-8.884E-05	1797653	-3003832
Story6	DCon2	Bottom	156653,4832	2.963E-06	0	-3.6632-05	1831180	-3060767
Story5	DCon2	Тор	171194.1255	2.958E-06	0	-8.658E-05	2001160	-3343975
8tory5	DCon2	Bottom	174063.7765	2.958E-06	0	-8.658E-05	2034695	-3400919
Story4	DCon2	Тор	188604.4188	2.953E-06	0	-8.651E-05	2204675	-3684127
Story4	DCon2	Bottom	191473.493	2.953E-06	0	-8.651E-05	2238203	-3741062
Story3	DCon2	Тор	206014.1353	2.951E-06	0	-8.65E-05	2408183	-4024270
Story3	DCon2	Bottom	208883.1987	2.952E-06	0	-8.65E-05	2441710	-4081206
Story2	DCon2	Тор	223423.841	2.952E-06	0	-8.65E-05	2611690	-4384413
	DCon2	Bottom	226292.9044	Story2	0	-3.65E-05	2645218	-4421349
Story1	DCon2	Тор	240833.5467	2.951E-06	0	-8.649E-05	2815198	-4704556
Story1	DCon2	Bottom	243702.6101	2.951E-06	0	-8.649E-05	2848726	-4761492
Story14	Dead	Тор	7251.1753	0	0	0	84766.2398	-140400
Story14	Dead	Bottom	9163.4926	0	0	0	107112.8238	-178352
Story13	Dead	Тар	16414.6679	0	0	0	191879.0638	-818752
Story13	Dead	Bottom	18326.9851	0	0	0	214225.6476	-356703
Story12	Dead	Тор	25578.1605	0	0	0	298991.8874	-497103
Story12	Dead	Bottom	27467.7387	0	0	0	321081.2701	-534706
Story11	Dead	Тор	34718.9141	0	0	-5.566E-07	405847.51	-675106
Story11	Dead	Bottom	36631.7331	0	0	-5.488E-07	428199.7598	-713065
Story10	Dead	Тор	43882.9085	1.974E-06	0	-2.441E-05	512965.9992	-853465
Story10	Dead	Bottom	45795.8422	1.974E-06	0	-2.441E-05	535317.2712	-891423
Story 9	Dead	Тор	53046.8176	1.9988-06	0	-2.47E-05	620083.511	-1031823
Story9	Dead	Bottom	54959.9326	1.998E-08	0	-2.47E-05	642439.4884	-1069788
Story8	Dead	Тор	62211.108	1.987E-06	0	-2.457E-05	727205.7283	-1210187

story	Load	Location	P	VX	W	T	MX	MY
	Case/Combo		KN	KN	KN	kN-m	kN-m	KN-m
Story8	Dead	Bottom	64124.6111	1.9885-06	0	-2.458E-05	749566.5898	-1248158
Story7	Dead	Тор	71375.7885	1.988E-08	0	-2.458E-05	834332.8296	-1288557
Story7	Dead	Bottom	73288.4918	1.988E-08	0	-2.458E-05	856684.5274	-1426514
Story6	Dead	Тор	80539.6671	1.984E-06	0	-2.453E-05	941450.7673	-1566914
Story6	Dead	Bottom	82452.3797	1.984E-06	0	-2.453E-05	963802.4041	-1604871
Story5	Dead	Тор	89703.555	1.981E-06	0	-2.449E-05	1048569	-1745272
8tory5	Dead	Bottom	91616.6557	1.981E-06	0	-2.45E-05	1070925	-1783235
Story4	Dead	Тор	98867.831	1.978E-06	0	-2.445E-05	1155691	-1923635
Story4	Dead	Bottom	100780.5471	1.977E-06	0	-2.445E-05	1178043	-1961593
Story3	Dead	Тор	108031.7225	1.977E-08	0	-2.444E-05	1262809	-2101993
Story3	Dead	Bottom	109944.4314	1.977E-06	0	-2.444E-05	1285161	-2139950
8tory2	Dead	Тор	117195.6067	1.977E-08	0	-2.445E-05	1389927	-2280350
8tory2	Dead	Bottom	119108.3157	1.977E-08	0	-2.444E-05	1392279	-2318308
Story1	Dead	Тор	126359.491	1.977E-08	0	-2.444E-05	1477045	-2458708
Story1	Dead	Bottom	128272.1999	1.977E-06	0	-2.444E-05	1499397	-2496665
Story14	eqx	Тор	0	-233.0544	0	2724.3189	0	0
Story14	eqx	Bottom	0	-233.5734	0	2730.2013	0	-699.9417
Story13	eqx	Тор	0	-470.9629	0	5505.1283	0	-699.9417
Story13	eqx	Bottom	0	-471.1887	0	5507.7455	0	-2113.1661
Story12	eqx	Тор	0	-673,4889	0	7872.4556	0	-2113.1661
Story12	eqx	Bottom	0	-673,4889	0	7872.4558	0	-4133.6327
Story11	eqx	Тор	0	-843.3204	0	9857.7313	0	-4133.6327
Story11	eqx	Bottom	0	-843.8519	0	9881.4839	0	-6664.0995
Story10	eqx	Тор	0	-984.1223	0	11503.4927	0	-6684.0995
Story10	eqx	Bottom	0	-984.3938	0	11508.5884	0	-9616.8772
Story9	eqx	Тор	0	-1098.1772	0	12836.622	0	-9616.8772
Story9	eqx	Bottom	0	-1098.3971	0	12839.1116	0	-12911.7418
Story8	eqx	Тор	0	-1188.3065	0	13890.0994	0	-12911.7413
Story8	eqx	Bottom	0	-1188.4787	0	13892.0488	-5.494E-07	-16476.9191
Story7	eqx	Тор	0	-1257.2167	0	14696.7253	-5.507E-07	-16476.9191
Story7	eqx	Bottom	0	-1257.4418	0	14698.1434	-7.831E-07	-20249.0569
Story6	eqx	Тор	0	-1308.0151	0	15289.3144	-7.829E-07	-20249.0569
Story 6	eax	Bottom	0	-1308.1087	0	15290.3755	-8.04E-07	-24173.2426
Story5	eqx	Тор	0	-1343.2301	0	15700.9242	-8.032E-07	-24173.2426
Story5	eqx	Bottom	0	-1343.2948	0	15701.6544	-6.819E-07	-28203.0289
Story4	eqx	Тор	0	-1385.7719	0	15964.4016	-6.821E-07	-28203.0289
Story4	eqx	Bottom	0	-1285.8129	0	15964.8775	0	-32300.4071
Story3	eqx	Top	0	-1378.4568	0	16112.6655	0	-82800.4071
Story3	eax	Bottom	0	-1378.48	0	16112.9283	0	-38435.8127
Story2	eqx	Тор	0	-1384.0994	0	16178.615	0	-38435.8127
Story2	eqx	Bottom	0	-1384.1097	0	16178.7318	0	-40588.1262
Story1	eqx	Тор	0	-1385.5145	0	16195.153	0	-40588.1262
Story1	eax	Bottom	0	-1285.5171	0	16195.1822	0	-44744.6735
Story14	eqy	Тор	0	0	-225.8551	-4457.8075	0	0
Story14	eqy	Bottom	0	0	-228.1577	-4465.8224	677.7192	0
Story 12	eqy	Тор	0	0	-456.0102	-9010.0506	677.7192	0
Story 12	eqy	Bottom	0	0	458.2269	4013.3767	2046.0749	0
8tory12	eqy	Тор	0	0	-652.1062	-12886.2468	2046.0749	0
Story 12	eqy	Bottom	0	0	-652.1062	-12888.2468	4002.3935	0
Story11	_	Тор	0	0	-816.5457	-16138.1771	4002.3935	0
Story11	eqy eqy	Bottom	0	0	-816.8667	-16143.1041	6452.5201	0
			0	0	-952.8773	-18832.3405	6452.5201	0
Story10	eqy	Top						
Story10	eqy	Bottom	0	0	-953.1402	-18836.3761	9311.5495	0

International Journal of Scientific Engineering and Technology Research Volume.05, IssueNo.41, November-2016, Pages: 8563-8569

Analysis & Design of Commercial Building (C+G+15) By Shear Wall Design and Optimization Using E-Tabs

story	Load	Location	P	VX	W	T	MX	MY
otory	Case/Combo	Longion	KN	KN	KN	kN-m	KN-m	kN-m
Story9	eqy	Тор	0	0	-1063.311	-21014.6921	9311.5495	0
Story9	eqy	Bottom	0	0	-1063.5239	-21017.9609	12501.8045	0
Story8	eqy	Тор	0	0	-1150.5787	-22739.196	12501.8045	0
Story8	eqy	Bottom	0	0	-1150.7455	-22741.7555	15953.7908	0
Story7	eqy	Тор	0	0	-1217.398	-24059.5934	15953.7908	0
Story7	eqy	Bottom	0	0	-1217.5191	-24061.4532	19606.1664	0
Story6	eqy	Тор	0	0	-1268.4887	-25029.6367	19606.1684	0
Story6	eqy	Bottom	0	0	-1288.5774	-25031.0284	23405.7626	0
8tory5	eqy	Тор	0	0	-1200.5837	-25703.394	23405.7628	0
8tory5	eqy	Bottom	0	0	-1300.6461	-25704.3517	27307.6065	0
Story4	eqy	Тор	0	0	-1322,4098	-28134.6607	27307.6065	0
Story4	eqy	Bottom	0	0	-1322,4505	-26135.2848	31274.8964	0
Story3	eqy	Тор	0	0	-1334,692	-26377.3248	31274.8964	0
Story3	eqy	Bottom	0	0	-1224.7145	-26377.6696	35279.0063	0
8tory2	eqy	Тор	0	0	-1340.1554	-26485.2468	35279.0063	0
8tory2	eqy	Bottom	0	0	-1340.1654	-26485.4	39299.4873	0
8tory1	eqy	Тор	0	0	-1341.5256	-26512.2937	39299.4873	0
Story1	eqy	Bottom	0	0	-1341.528	-26512.332	43324.0678	0
Story14	Live	Тор	2442.5882	0	0	0	28553.8327	-48404.4885
Story14	Live	Bottom	2442.5862	0	0	0	28553.8327	-48404.4685
Story13	Live	Тор	4885.1724	0	0	0	57107.8854	-96808.9369
Story13	Live	Bottom	4885.1724	0	0	0	57107.8854	-96808.9369
Story12	Live	Тор	7327.7588	0	0	0	85661.498	-145213
Story12	Live	Bottom	7327.7588	0	0	0	85681.498	-145213
Story11	Live	Тор	9770.3448	0	0	0	114215.3307	-193618
Story11	Live	Bottom	9770.3448	0	0	0	114215.3307	-193818
Story10	Live	Тор	12212.931	0	0	0	142769.1634	-242022
Story10	Live	Bottom	12212.931	0	0	0	142769.1634	-242022
Story9	Live	Тор	14855.5172	0	0	0	171322.9981	-290427
Story9	Live	Bottom	14855.5172	0	0	0	171322.9961	-290427
Story8	Live	Тор	17098.1034	0	0	0	199876.8287	-328821
Story8	Live	Bottom	17098.1034	0	0	0	199876.8287	-338831
Story7	Live	Тор	19540.6898	0	0	0	228430.6614	-387238
Story7	Live	Bottom	19540.6896	0	0	0	228430.6614	-387238
Story6	Live	Тор	21983.2758	0	0	0	256984.4941	-435640
Story6	Live	Bottom	21983.2758	0	0	0	256984.4941	-435640
8tory5	Live	Тор	24425.862	0	0	0	285538.3268	-484045
8tory5	Live	Bottom	24425.862	0	0	0	285538.3268	-484045
Story4	Live	Тор	26868.4482	0	0	0	314092.1595	-532449
Story4	Live	Bottom	26868.4482	0	0	0	314092.1595	-532449
Story3	Live	Тор	29311.0344	0	0	0	342645.9921	-580854
Story3	Live	Bottom	29311.0344	0	0	0	342645.9921	-580854
8tory2	Live	Тор	31753.8208	0	0	0	371199.8248	-629258
8tory2	Live	Bottom	31753.8208	0	0	0	371199.8248	-629258
8tory1	Live	Тор	34198.2088	0	0	0	399753.6575	-677683
Story1	Live	Bottom	34196.2068	0	0	0	399753.6575	-677663
Story14	wlixy 1	Тор	0	-67.3238	0	787.0132	0	0
Story14	wlixy 1	Bottom	0	-67.3238	0	787.0132	0	-201.9709
Story12	wilxy 1	Тор	0	-200.7807	0	2347.1285	0	-201.9709
Story13	wixy 1	Bottom	0	-200.7807	0	2347.1285	0	-804.313
Story12	wixy 1	Тор	0	-332.4604	0	3886.4619	0	-804.313
Story12	wilxy 1	Bottom	0	-332.4604	0	3886.4619	0	-1801.6942
Story11	wiixy 1	Тор	0	-462.3746	0	5405.1585	0	-1801.6942

story	Load Case/Combo	Location	P KN	VX KN	VY KN	T KN-m	MX kN-m	MY kN-m
Story 11	wixy 1	Bottom	0	-462.3746	0	5405,1585	0	-3188,8178
		Top	0	-590.245	0	6899.9642	0	-3188.817
Story10	wlixy 1	Bottom	0	-590.245	•	6899.9642		
8tory10 8tory9	wlixy 1 wlixy 1	Top	0	-714,9371	0	8357,6152	0	-4959.552 -4959.552
Story 9	wixy 1	Bottom	0	-714.9371	0	8357,6152	0	-7104.384
atorya Storys		Top	0	-636,2055	0	9775.2423	0	-7104.864
Storys Storys	wlixy 1 wlixy 1	Bottom	0	-838.2055	0	9775.2423	0	-9612.980
atorya 8tory7	wixy 1	Top	0	-954.065	0	11153.0193	0	-9612.980
Story7	wixy 1	Bottom	0	454.065	0	11153.0193	-5.355E-07	-12475.175
atory6	wixy 1	Top	0	-1068,1882	0	12487.0965	-5.352E-07	12475.175
Story6	wixy 1	Bottom	ů.	-1068.1882	0	12487.0965	-5.509E-07	-15679.734
atorys 8tory5	wixy 1	Top	0	-1178,1739	0	13772.8523	-5.503E-07	-15679.734
Story5	wixy 1	Bottom	0	-1178,1739	0	13772.8523	0.5002107	-19214.255
atorya Story4	wixy 1	Too	0	-1283.2882	0	15001.6159	0	19214.255
Story4	wixy 1	Bottom	0	-1283.2882	0	15001.8159	0	-23064.114
Story 3	wixy 1	Too	0	-1385.2562	0	16193,6448	0	-23064.114
Story3	wixy 1	Bottom	0	-1385.2582	0	16193.6448	0	-27219.883
Story2	wixy 1	Top	0	-1486.9789	0	17382.7832	0	-27219.883
Story2	wixy 1	Bottom	ů.	-1486.9789	0	17382.7832	0	-31680.819
Story1	wixy 1	Top	0	-1588,7016	0	18571,9215	0	-31680.819
Story1	wixy 1	Bottom	0	-1588,7016	0	18571.9215	0	-38448.924
Story 14	wixy 2	Top	0	0	-112,1005	-2182.0354	0	0
Story14	wixy 2	Bottom	ů.	0	-112.1005	-2182.0354	336,3014	0
awiy 14 Story 13	wixy 2 wixy 2	Top	0	0	-334,2196	-6507.5318	338.3014	0
Story 13	wixy 2	Bottom	0	0	-334,3196	-6507.5318	1339,2603	0
Story 12	wixy 2	Top	0	0	-553,5792	-10775.42	1239.2603	0
Story 12	wixy 2	Bottom	0	0	-553.5792	-10775.42	2999.998	0
8tory11	wixy 2	Top	0	0	-769,8991	-14986.0862	2999.998	0
Story 11	wixy 2	Bottom	0	0	-769,8991	-14988.0882	5309,6954	0
Story10	wixy 2	Too	0	0	-982,816	-19130.5127	5309.6954	0
Story10	wixy 2	Bottom	0	0	-982,816	-19130.5127	8258,1432	0
8tory9	wixy 2	Too	0	0	-1190,4406	-23171.9268	8258.1432	0
Story9	wixy 2	Bottom	0	0	-1190.4406	-23171,9268	11829.4651	0
Story 8	wixy 2	Too	0	0	-1392,3644	-27102.3727	11829.4651	0
Story 8	wixy 2	Bottom	0	0	-1392,3844	-27102.3727	16006.5583	0
Story7	wixy 2	Top	0	0	-1588.612	-30922.3318	16006.5583	0
Story7	wixy 2	Bottom	0	0	-1588.612	-30922.3318	20772.3941	-5.245E-0
Story6	wixy 2	Тор	0	0	-1778.635	-84621.1309	20772.3941	-5.242E-0
Story6	wixy 2	Bottom	0	0	-1778.635	-34621.1309	26108.2992	-5.44E-07
Story5	wixy 2	Тор	0	0	-1961.7753	-38185.9567	26108.2992	-5.435E-0
Story5	wixy 2	Bottom	0	0	-1981.7753	-38185.9567	31993.8252	-5.569E-0
Story4	wixy 2	Тор	0	0	-2136.7978	-41592.7683	31993.8252	-5.565E-0
8tory4	wixy 2	Bottom	0	0	-2136.7978	-41592.7683	38404.0185	-5.552E-0
and a	11107 •		•	•		11000.1000		
Steel ²	ullys 5	Ten	0	0	-2306.5878	-44897.7312	38404.0185	-5.553E-0
Story3	wlixy 2	Top	-					-5.834E-0
Story3	wixy 2	Bottom	0	0	-2306.5878	-44897.7312	45323.7818	
Story2 Story2	wixy 2	Top Bottom	0	0	-2475.9661	-48194.6797	45323.7818	-5.844E-0
Story2	wixy 2	Bottom	0	0	-2475.9661	-48194.6797	52751.68	-5.948E-0
Story1	wlixy 2	Тор	0	0	-2645.3444	-51491.6283	52751.68	-5.952E-0
Story1	wixy 2	Bottom	0	0	2845.3444	-51491.6283	60687.7132	-6.062E-01
Story14	W-xy 1	Тор	0	0	112.1005	2182.0354		0
Story 14	wl-xy 1	Bottom	0	0	112,1005	2182.0354	-338.3014	0

International Journal of Scientific Engineering and Technology Research Volume.05, IssueNo.41, November-2016, Pages: 8563-8569

AGEPATI VENKATA GANESH, MUJAHID AHMED

Story 13	wixy 1	Bottom	0	0	334.3196	6507.5318	-1339.2803	0
Story12	wixy 1	Тор	0	0	553.5792	10775.42	-1339.2603	0
Story12	wixy 1	Bottom	0	0	553.5792	10775.42	-2999.998	0
Story11	wi-xy 1	Тор	0	0	769.8991	14988.0882	-2999.998	0
Story11	wixy 1	Bottom	0	0	769.8991	14988.0882	-5309.6954	0
Story10	wixy 1	Тор	0	0	982.816	19130.5127	-5309.6954	0
Story10	wi-xy 1	Bottom	0	0	982.816	19130.5127	-8258.1432	0
Story9	wixy 1	Тор	0	0	1190.4406	23171.9268	-8258.1432	0
Story9	wi-xy 1	Bottom	0	0	1190.4408	23171.9268	-11829.4851	0
Story8	wi-xy 1	Тор	0	0	1392.3844	27102.3727	-11829.4851	0
Story8	wixy 1	Bottom	0	0	1392.3844	27102.3727	-16006.5583	0
Story7	wixy 1	Top	0	0	1588.612	30922.3318	-16006.5583	0
Story7	wixy 1	Bottom	0	0	1588,612	30922.3318	-20772.3941	5.245E-07
Story6	wixy 1	Top	0	0	1778.635	34621.1309	-20772.3941	5.242E-07
Story6	wixy 1	Bottom	0	0	1778,635	34621,1309	-26108.2992	5.442E-07
Story5	wixy 1	Top	0	0	1961.7753	38185.9567	-26108.2992	5.484E-07
8tory5	wixy 1	Bottom	0	0	1961.7753	38185.9567	-21993.6252	5.569E-07
atory4	wixy 1	Top	0	0	2136.7978	41592,7683	-31993.6252	5.564E-07
Story4	wixy 1	Bottom	0	0	2136,7978	41592,7683	-38404.0185	5.552E-07
Story3	wixy 1	Top	0	0	2306,5878	44897.7312	-38404.0185	5.553E-07
Story3	wixy 1	Bottom	0	0	2206.5878	44897.7312	45323.7818	5.634E-07
Story2	wixy 1	Top	0	0	2475.9661	48194.6797	45323.7818	5.645E-07
		Bottom	0	0	2475.9661	48194.6797	-52751.68	5.948E-07
Story2	Wixy 1	Too	0	0	2645.3444	46134.6737	-52751.68	5.953E-07
Story1	wi-xy 1		0	0			-60687.7132	
Story1	wixy 1	Bottom	-		2645.3444	51491.8283		6.063E-07
Story14	wixy 2	Тор	0	-67.3236	0	787.0132	0	0
Story14	wi-xy 2	Bottom	0	-67.3238	0	787.0132	0	-201.9709
Story 13	wi-xy 2	Тор	0	-200.7807	0	2847.1265		-201.9709
Story13	wixy 2	Bottom	0	-200.7807	0	2847.1265	0	-804.313
Story12	wi-xy 2	Тор	0	-332.4604	0	3886.4619	0	-804.313
Story12	wixy 2	Bottom	0	-332.4604	0	3886.4619	0	-1801.6943
8tory11	wi-xy 2	Тор	0	-462.3746	0	5405.1585	0	-1801.694
Story11	wixy 2	Bottom	0	-462.3748	0	5405.1585	0	-3188.817
Story10	wi-xy 2	Тор	0	-590.245	0	6899.9642	0	-3188.8171
Story10	wi-xy 2	Bottom	0	-590.245	0	6899.9642	0	-4959.552
8tory9	wixy 2	Тор	0	-714.9871	0	8357.6152	0	-4959.552
8tory9	wixy 2	Bottom	0	-714.9871	0	8357.6152	0	-7104.384
8tory8	wi-xy 2	Тор	0	-838.2055	0	9775.2428	0	-7104.384
8tory8	wi-xy 2	Bottom	0	-838.2055	0	9775.2428	0	-9612.980
8tory7	wixy 2	Тор	0	-954.065	0	11153.0193	0	-9612.980
8tory7	wł-xy 2	Bottom	0	-954.065	0	11153.0193	-5.356E-07	-12475.175
8tory6	wixy 2	Тор	0	-1068.1882	0	12487.0965	-5.352E-07	-12475.175
Story6	wixy 2	Bottom	0	-1068,1882	0	12487.0965	-5.509E-07	-15879.734
8tory5	wixy 2	Тор	0	-1178.1739	0	13772.8523	-5.503E-07	-15879.734
8tory5	wł-xy 2	Bottom	0	-1178.1739	0	13772.8523	0	-19214.255
8tory4	wixy 2	Тор	0	-1283.2882	0	15001.8159	0	-19214.255
Story4	wi-xy 2	Bottom	0	-1283.2882	0	15001.8159	0	-23064.114
8tory3	wi-xy 2	Тор	0	-1385.2582	0	16193.6448	0	-23064.114
8tory3	wi-xy 2	Bottom	0	-1385.2582	0	16193.6448	0	-27219.882
8tory2	wi-xy 2	Тор	0	-1488.9789	0	17382.7832	0	-27219.882
	wixy 2	Bottom	0	-1488.9789	0	17382.7832	0	-81680.819
8tory2								
8tory2 8tory1	W(xy 2	Тор	0	-1588.7016	0	18571.9215	0	-31680.819

				Story St	lilleob		
story	Load Case	Shear X KN	Drift X mm	Stiffness X KN/m	Shear Y KN	Drift Y mm	Stiffness Y KN/m
Story14	equ 1	233.5734	0.8	307605.764	0	0	0
Story13	equ 1	471.1867	0.5	964269.855	0	0	0
Story12	equ 1	673.4889	0.5	1278365.115	0	0	0
Story11	equit 1	843.6519	1.2	705679.258	0	0	0
Story10	¢96.1	984.3938	3.2	306280.354	0	0	0
Story9	equi 1	1098.3971	0.6	1838807.202	0	0	0
Story8	equ 1	1188.4787	0.6	2086774.901	0	0	0
Story7	equi 1	1257.4418	0.6	2251258.037	0	0	0
Story6	equ 1	1308.1087	0.5	2543841.072	0	0	0
Story5	equi 1	1343.2946	0.5	2724840.037	0	0	0
Story4	equit 1	1365.8139	0.4	3094802.761	0	0	0
Story3	¢qç 1	1378.48	0.4	3876568.245	0	0	0
Story2	equ 1	1384.1097	0.3	5450247.471	0	0	0
Story1	equi 1	1385.5171	0.1	11602305	0	0	0
Story14	¢98,1	0	0.0005357	0	228.1577	0.6	359179.054
Story13	equi 1	0	0.0005562	0	458.2269	0.6	723585.593
Story12	¢98.1	0	0.0006319	0	652,1062	0.6	1020120.738
Story11	¢98,1	0	0.0007083	0	816.8667	37	22068.376
Story10	¢98.1	0	0.0007729	0	953.1402	155.6	6124.497
Story9	¢98,1	0	0.0008244	0	1063.5239	0.6	1719969.579
Story8	eqg 1	0	0.000858	0	1150.7455	0.6	1898450.616
Story7	¢98.1	0	0.0008695	0	1217.5191	0.6	2120602.153
Story6	¢98,1	0	0.0008548	0	1266.5774	0.5	2508948.198
8tory5	¢98,1	0	0.00081	0	1300.6461	0.5	2741483.153
Story4	496 1	0	0.0007352	0	1322.4505	0.4	3268672.481
Story3	¢98,1	0	0.0006171	0	1334.7145	0.3	4140264.255
Story2	¢98,1	0	0	0	1340.1654	0.2	5945833.465
Story1	¢98 1	0	0	0	1341.528	0.1	12261315

D. Modal Results TABLE IV: Modal Periods and Frequencies

				-	
C389	Mode	Period sec	Frequency	Circular Frequency rad/sec	Elgenvalue rad ¹ /sec ¹
Modal	1	7.613	0.131	0.8253	0.6811
Modal	2	7.537	0.133	0.8337	0.695
Model	3	0.939	1.065	6.6899	44.7541
Modal	4	6.93	1.076	6.7598	45.6885
Model	5	0.871	1.149	7.2177	52.0948
Modal	6	0.843	1.186	7.4543	55.5673
Modal	7	0.561	1.782	11.1953	125.3344
Modal	8	0.339	2.949	18.5286	343.3103
Modal	9	0.338	2.961	18.6031	346.0748
Modal	10	0.336	2.974	18.6841	349.097
Modal	11	0.32	3.122	19.6178	384.8575
Case	Mode	Period sec	Frequency cyc/sec	Circular Frequency rad/sec	Elgenvalue rad ¹ /sec ¹
Modal	12	0.319	3.135	19.6984	388.0287

TABLE V: Modal Participating Mass Ratios (Part 1 of 2)

Case	Mode	Period 890	UX	UY	UZ	Sum UX	Sum UY	Sum UZ
Modal	1	7.613	0	0.0001	0	0	0.0001	0
Modal	2	7.537	0	0.0001	0	0	0.0001	0
Modal	3	0.939	0.0014	0	0	0.0014	0.0001	0
Modal	4	86.0	0.0013	0	0	0.0026	0.0001	0
Modal	5	0.871	6.442E-06	0.6683	0	0.0028	0.6684	0
Modal	6	0.843	0.6965	6.116E-06	0	0.6991	0.6685	0
Modal	7	0.561	0	1.996E-05	0	0.6991	0.6685	0
Modal	8	0.339	7.799E-06	0	0	0.6991	0.6685	0
Modal	9	0.338	8.379E-07	0	0	0.6991	0.6685	0
Modal	10	0.336	6.293E-07	0	0	0.6991	0.6685	0
Modal	11	0.32	1.031E-06	0	0	0.6991	0.6685	0
Modal	12	0.319	0	0	0	0.6991	0.6685	0

International Journal of Scientific Engineering and Technology Research Volume.05, IssueNo.41, November-2016, Pages: 8563-8569

TABLE III: Story Stiffness

Analysis & Design of Commercial Building (C+G+15) By Shear Wall Design and Optimization Using E-Tabs

Case	Mode	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
Modal	1	3.291E-05	0	6.654E-06	3.291E-05	0	6.654E-06
Modal	2	1.304E-05	0	6.588E-06	4.595E-05	0	1.324E-05
Modal	3	0	0.0006	0	4.595E-05	0.0006	1.356E-05
Modal	4	0	0.0005	0	4.595E-05	0.0011	1.385E-05
Modal	5	0.3475	2.9E-06	2.377E-05	0.8475	0.0011	3.762E-05
Modal	6	3.257E-06	0.3176	0	0.3475	0.3187	3.762E-05
Modal	7	1.466E-05	0	0.6759	0.3476	0.3187	0.6759
Modal	8	0	3.025E-05	0	0.3476	0.3188	0.6759
Modal	9	0	1.191E-06	0	0.3476	0.3188	0.6759
Modal	10	0	8.168E-07	0	0.3476	0.3188	0.6759
Modal	11	0	2.292E-06	0	0.3476	0.3188	0.8759
Modal	12	0	0	0	0.3476	0.3188	0.6759

TABLE VI: Modal Participating Mass Ratios(Part 2 of 2)

TABLE VII: Modal Load Participation Ratios

Case	Item Type	Item	Static %	Dynamic %
Modal	Acceleration	UX	98.38	69.91
Modal	Acceleration	UY	98.51	66.85
Model	Acceleration	UZ	0	0

V. CONCLUSION

Reinforced concrete is the most widely used construction material in the building industry. Orthodox criteria for design of RCC members are almost exclusively concerned with strength, while ductility and energy absorption receive little consideration. The guideline laid down by IS 13920: 2002 and IS 1893: 2002 and the explanations to achieve ductility and improved detailing have been described. The draft code IS 893 (Parts I and II) have also been referred wherever felt desirable. The possible sources of damages to RC construction and their prevention and restoration have been detailed. The fundamental principles of earthquake-resistant design applicable to RCC members are outlined. Shear walls, which form an important lateral load-resisting element, have been discussed in detail. A number of examples have been solved to illustrate the design principle outlines in the chapter. The variation of axial force & moments with stories is linear. The variation of shear force, storey lateral load, drifts & base shear with stories is non linear. If we compare the frame with shear wall & shear core to only frame model (s.m.r.f), the volume of R.C.C obtained for only frame is 100 % where frame with shear wall & shear core is 33.4 %. By providing a ductile shear walls and shear core for the s.m.r.f.(special moment resisting frame) ,the cross sectional properties are reduced and also axial forces, moments, shear forces, tensile forces, storey lateral loads and base shear are also reduced. Hence the design of building with shear wall & shear core is more economical and optimistic.

VI. REFERENCES

[1] National Building Code of India in 1983 and Building Construction by Rangwala

[2] Planning & Layout of drawings by using N. Srinivasulu, A. Kamal and S. Subramanyam

[3] Arum C and Akinkunmi A (2011) "Comparison of windinduced displacement characteristics of buildings with different lateral load resisting system" Scientific Research Vol.3 PP. 236-247

[4] B.K.Thakkar (2012) "analysis of shear walls under

International Journal of Scientific Engineering and Technology Research Volume.05, IssueNo.41, November-2016, Pages: 8563-8569

compression and bending" current trends in technology and science vol: 1, Issue: 2.

[5] B.K.Thakkar (2012) "analysis of shear walls under compression and bending" current trends in technology and science vol: 1, Issue: 2.

[6] Structural analysis by Ramamrutham and Dr. Prakash Rao

[7] R.C.C by A.K.Ashok, Devdas Menon and Pilley, Carvay and Sha.

[8] Code of Practice (RCC) –IS-456-2000, IS-875-1987(part-2) & IS 1893-1 2002.