

www.semargroups.org

Volume 01, No. 01

Jul-Dec 2012, P.P. 67-74

Copyright @ 2012 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Synthesis Techniques for Pseudo-Random Built-In Self-Test Based

on the LFSR
S.SRAVANTHI

1
, C. HEMASUNDARA RAO

2

1
M.Tech Student of CMRIT, Ranga Reddy(Dt), AP-India,e-mail: sakamurisravanthi@gmail.com,

2
Professor, ECE Dept, CMRIT, Ranga Reddy(Dt), AP-India.

Abstract: The structure of test system based on application built-in self-test (BIST) circuitries has been proposed.

The main idea is oriented on minimization of hardware overheads and dealt with automatization of BIST-circuitries

generation. Test generator based on linear feedback shift register (LFSR) provides two types of testing

pseudorandom and deterministic. The proposed modified Berlekamp–Massey algorithm is used for generation the

LFSR polynomial coefficients. The experimental results of technique application for some ISCAS’89 benchmark

circuits have been shown. The entire design is modelled using Verilog language and simulation is done using Xilinx

ISE 12.1 tool and synthesis is done using XST synthesis tool.

Keywords: IC test, BIST, LFSR, MISR, polynom synthesis.

I. INTRODUCTION

Both the development of up-to-date integrated

technologies and the increasing complexity of designed

electronic devices provide the growth of testing process

complication. The testing ensures required reliability

and quality of produced electronic devices and systems.

But testing has influence on growth both product cost

and time-to-market. The use of design-for-testability

and in particular built-in selftest (BIST) approach

should allow reducing time and cost expenses. The

BIST-approach relies on realization special testing

subcircuits, providing test pattern generation (TPG) and

output responses analysis, on the same chip together

with original circuit. One of the efficient solutions for

TPG realization and compact representation of output

signals is LFSR (Linear Feedback Shift Register) or

MISR (Multiple Input Shift Register). The LFSR/MISR

is more efficient in comparison with simple binary

counters because requires less combinational logic per

one flip-flop and can works on higher frequencies. The

generated output signals of LFSR can be considered as

pseudorandom. The structure of test system based on

LFSR includes generator of test signals, signature

analyzer, test controller, and also register with internal

or external “gold” signature and comparator. All

elements of structure are realized as separate modules

and interact with circuit under test using primary inputs

and outputs. The structure of test system based on

LFSR/MISR is represented in Fig. 1.

Fig. 1. The structure of test system

 The LFSR without external input which called

as Autonomous LFSR (ALFSR) is used for test

generator (TG) construction. The signals of feedback

are sum by modulo 2 and apply to LFSR input (Fig. 2).

The generated output signals are repeated periodically.

The maximum number of different state is equal to 2n

−1, where n – is a LFSR digit capacity.

S.SRAVANTHI, C. HEMASUNDARA RAO

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

Fig. 2. Structure of Autonomous LFSR (ALFSR)

The LFSR is described by characteristic polynomial as

following:

 (1)

where n is a LFSR digit capacity; the coefficient of

feedback signal presents, equal to 1, if the i-th stage has

feedback, and 0 in opposite case.

Characteristic polynomial may be described in three

possible ways:

 irreducible polynomial, which cannot be split

on polynomials of less exponent;

 reducible polynomial, which can be

represented by a product of simple irreducible

polynomials;

 primitive polynomial, is irreducible polynomial

of exponent n, which divides polynomial

 without remainder.

In practice the characteristic polynomial should be used

in order to provide reliable operation of LFSR/MISR

and increase the period of output signal repeating. The

modification of Berlekamp–Massey algorithm is

proposed to use for generation the LFSR/MISR

polynomial Co-efficients. The resulting polynomial

generates specified sequence of signals of length n or n

working cycles. Important feature of generated

polynomial consists in the fact what exponent and

consequently digit capacity of obtained polynomial is

minimal and less or equal n/2.

II. MODIFIED BERLEKAMP–MASSEY

ALGORITHM FOR SYNTHESIS LFSR/MISR

 A linear feedback shift register (LFSR) is a shift

register whose input bit is a linear function of its

previous state. The most commonly used linear function

of single bits is XOR. Thus, an LFSR is most often a

shift register whose input bit is driven by the exclusive-

or (XOR) of some bits of the overall shift register value.

The initial value of the LFSR is called the seed, and

because the operation of the register is deterministic, the

stream of values produced by the register is completely

determined by its current (or previous) state. Likewise,

because the register has a finite number of possible

states, it must eventually enter a repeating cycle.

However, an LFSR with a well-chosen feedback

function can produce a sequence of bits which appears

random and which has a very long cycle.

 An LFSR is one of a class of devices known as

state machines. The contents of the register, the bits

tapped for the feedback function, and the output of the

feedback function together describe the state of the

LFSR. With each shift, the LFSR moves to a new state.

(There is one exception to this -- when the contents of

the register are all zeroes, the LFSR will never change

state.) For any given state, there can be only one

succeeding state. The reverse is also true: any given

state can have only one preceding state. For the rest of

this discussion, only the contents of the register will be

used to describe the state of the LFSR.

 A state space of an LFSR is the list of all the

states the LFSR can be in for a particular tap sequence

and a particular starting value. Any tap sequence will

yield at least two state spaces for an LFSR. (One of

these spaces will be the one that contains only one state

-- the all zero one.) Tap sequences that yield only two

state spaces are referred to as maximal length tap

sequences.

 The state of an LFSR that is n bits long can be

any one of 2^n different values. The largest state space

possible for such an LFSR will be 2^n - 1 (all possible

values minus the zero state). Because each state can

have only once succeeding state, an LFSR with a

maximal length tap sequence will pass through every

non-zero state once and only once before repeating a

state.

 One corollary to this behavior is the output bit

stream. The period of an LFSR is defined as the length

of the stream before it repeats. The period, like the state

space, is tied to the tap sequence and the starting value.

As a matter of fact, the period is equal to the size of the

state space. The longest period possible corresponds to

the largest possible state space, which is produced by a

maximal length tap sequence.

 The modification is based on realization of the

Berlekamp Massey algorithm described in [8]. The

algorithm is used for construction linear feedback shift

register with minimal length, which generates specified

http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Exclusive-or
http://en.wikipedia.org/wiki/Exclusive-or

Synthesis Techniques for Pseudo-Random Built-In Self-Test Based on the LFSR

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

binary sequence. The algorithm takes n iterations for n-

bit sequence and at N-th iterations (N < n) the LFSR

polynom generating first N elements of sequence is

calculated.

Definition. Lets is a final binary sequence

. Lets L,C(D) is LFSR described

by polynom and generating

binary sequence . The next

difference is difference between and (N+1)-th

sequence element, generated by LFSR:

 (2)

Lets is final binary sequence and

is LFSR generated this sequence, where L is

LFSR length (L is linear complexity of sequence). Then

 generates sequence if

and only if the next difference is equal to 0;

 If , then linear complexity ; Suppose

. Lets m is the largest integer less N, such what

. Lets is LFSR by length

generating . Then is LFSR by minimal

length generating , where

 (3)

and . Besides a minimal length

there is additional requirement to test generator based

on LFSR polynom describing LFSR should be primitive

one. The structure of modified algorithm for synthesis

LFSR/MISR is represented in Fig. 3. The CAD

subsystem of TG realization based on the Berlekamp

Massey algorithm has been prepared using C++ [6]. The

checking of condition, what calculated polynom is

primitive, is provided in software. The input data for

software is represented by text-file with the following

structure: first line contains the number of elements in

sequence, second line contains the binary sequence.

For instance:

9

001101110

The output data is represented by text-file, where first

line contains the degree of polynom, second line

contains polynom as binary sequence and third line

contains indicator of primitive polynom condition

checking.

For instance:

Polynom degree: 5

1 0 0 1 0 1

Primitive

The sequence in example above corresponds to the

follows primitive polynom .

Fig.3. Modified Berlekamp–Massey algorithm for

LFSR/MISR generation.

The experiment was provided for different input binary

sequences. Some results are presented below:

Input: 12

 001011110010

Output: Polynom degree: 6

 1 1 0 0 0 0 1

 Primitive

S.SRAVANTHI, C. HEMASUNDARA RAO

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

Input: 14

 00101001001011

Output: Polynom degree: 7

 1 0 0 0 1 1 1 1

 Primitive

Input: 16

 0010110100001101

Output: Polynom degree: 10

 1 1 1 1 0 0 1 0 0 1 1

 Primitive

Input: 16

 1011011100011101

Output: Polynom degree: 8

 1 1 1 1 0 0 0 0 1

 Primitive

Input: 20

 10110111000111010010

Output: Polynom degree: 10

 1 0 0 0 0 0 1 0 1 1 1

 Primitive

Calculated LFSR was described in VHDL and

simulated in Mentor Graphics ModelSim tool. The

results have shown absolute correspondence between

generated sequence and input binary sequence.

 The overwhelming majority of calculated

polynoms is primitive one. Consequently, if the degree

of polynom is equal L, then corresponding register is

able to generate 2L patterns by width L. The length of

sequence used for LFSR generation at the average is

equal 2L. The rest (2L – 1) – L patterns can be used for

pseudorandom testing. Thus, generated LFSR can be

applied both for deterministic and pseudorandom testing

without use additional combinational logic.

III. TECHNIQUE OF LFSR/MISR GENERATION

 The process of LFSR generation with using

the Berlekamp–Massey algorithm can be described by

two main stages: selection of test generator (TG)

structure for deterministic test sequence and LFSR

generation [7].

 LFSR generators produce what are called linear

recursive sequences (LRS) because all operations are

linear. Generally speaking, the length of the sequence

before repetition occurs depends upon two factors, the

feedback taps and the initial state. An LFSR of any

given size m (number of registers) is capable of

producing every possible state during the period N=2
m

-1

shifts, but will do so only if proper feedback taps have

been chosen. For example, such an an eight stage LFSR

will contain every possible combination of ones and

zeros after 255 shifts. Such a sequence is called

a maximal length sequence, maximal sequence, or less

commonly, maximum length sequence. It is often

abbreviated as m-sequence. In certain industries m-

sequences are referred to as a pseudonoise (PN)

orpseudorandom sequences, due to their optimal noise-

like characteristics. (Informally, even non-maximal

sequences are often called pseudonoise or

pseudorandom sequences.)

 Technically speaking, maximal length

generators can actually produce two sequences. The

first--the trivial one--has a length of one, and occurs

when the initial state of the generator is set to all zeros.

(The generator simply remains in the zero state

indefinitely.) The other one--the useful one--has a

length of 2
m

-1. Together, these two sequences account

for all 2
m
 states of an m-bit state register. When the

feedback taps of an LFSR are non-maximal, the length

of the generated sequence depends upon the initial state

of the LFSR. A non-maximal generator is capable of

producing two or more unique sequences (plus the

trivial all-zeros one), with the initial state determining

which is produced. Each of these sequences is referred

to as a state space of the generator. Together, every non-

maximal sequence the generator can produce accounts

for all 2
m
 states of an m-bit state register.

Properties of non-maximal sequences are generally

inferior to those of maximal sequences. So the use of

non-maximal sequences in real systems is usually

avoided in favor of their maximal-length counterparts.

1) Deterministic sequence of test patterns can be defined

using any well-known methods of test generation for

sequential circuits [9]. The obtained test sequence is

represented as matrix, which contains binary test

patterns (Table 1).

TABLE 1

Synthesis Techniques for Pseudo-Random Built-In Self-Test Based on the LFSR

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

REPRESENTATION OF TEST SEQUENCE

There are two main ways to generate test patterns:

sequential and parallel. The first way relies on the use

only one LFSR generated each next pattern after p steps,

where p is a number of bits in a test pattern. During

parallel way the test patterns are generated at each step

of TG functioning, which consists of LFSRs.

Sequential way of test pattern generation: Test

sequence is specified in line (Table 2) and applied to

processing in CAD subsystem for LFSR polynom

calculation.

TABLE 2

LINEARIZED TEST SEQUENCE

 The set of coefficients for the LFSR polynom are

calculated in results of subsystem execution. The length

of polynom will be equal to the number of bits in test

pattern. The initial bits of test sequence initiate the

register.

Fig. 4. Sequential test generator based on LFSR:

a) MSB = 1, b) MSB = 0

A LFSR described by polynom with most significant bit

equal 1 is shown in Fig. 4, a and a LFSR described by

polynom with most significant bit equal 0 is represented

in Fig. 4, b.

Parallel way of test pattern generation: Here the

independent LFSR is used for generation each bit of a

test pattern. The columns of Table 1 are used as input

sequence for polynoms calculation of each LFSR. The

structure of parallel test generator is represented in Fig.

5.

Fig. 5. Parallel test generator

Both parallel and sequential test generators use at the

average the same number of flip-flops. If the length of

test pattern is equal p and length test sequence is equal

to n, then length of LFSR is (n - p)/ 2 .

The length of each LFSR of parallel generator is n / 2 .

Consequently the same (n - p) 2 flip-flops will be

required for realization of p parallel-working LFSR.

Both types of test generator (sequential and parallel) are

used in practice.

IV. IMPLEMENTATION OF TEST CIRCUITRIES

AND SIMULATION RESULTS

 Proposed technique was put on trial for

benchmark circuits from ISCAS’89 [10]. The following

frequency characteristics have been obtained for

different implementation of BIST-circuitries (LFSR as

well as BILBO – Built-In Logic Block Observer) in the

basis of FPGA using proposed technique. The synthesis

has been done for Xilinx FPGA Virtex-5 XC5VSX50T

(Table 3):

TABLE 3

THE RESULTS OF SYNTHESIS FOR FPGA

S.SRAVANTHI, C. HEMASUNDARA RAO

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

 Test circuitries have been implemented also in the

basis of standard cells using CMOS 0.35 um integrated

technology. The Mentor Graphics CAD tools were used

for ASIC standard cells synthesis. The aggregate results

of synthesis for ISCAS’89 circuits s27 and s386 with

two possible realization of test circuitries (LFSR and

BILBO) are represented in Tables 4 and 5.

TABLE 4

THE RESULTS OF S27 SYNTHESIS

TABLE 5

THE RESULTS OF S386 SYNTHESIS

The results of test circuitries synthesis show the

reducing maximum working frequency of original

circuits, increasing both a number of components and a

die area. The essential increasing a complexity and a die

area of circuit deals with simplicity of original circuits,

when initial number of components is proportional to a

number of components in test circuitries. Test

generators for both circuits generate test patterns which

provide coverage 100 % s-a faults using only

deterministic test. The structure of generators in both

cases is optimal and compact.

Comparing results of test circuitries implementation in

basis LFSR and BILBO the following conclusion can be

obtained – the efficiency of LFSR for simple circuits is

higher in contrast to a BILBO. But BILBO architecture

more efficient for test generator and signature analyzer

implementation than LFSR/MISR architecture for

complex circuits which contain many flip-flops and also

in the case when original circuits can be split on two

subcircuits and their testing is realized independent by

changing working mode of BILBO-blocks.

V. SIMULATION RESULTS

Fig6. Output Waveform of Top level Module BIST

Fig6. Output Waveform of LFSR

Fig7. Output waveform of controller

Synthesis Techniques for Pseudo-Random Built-In Self-Test Based on the LFSR

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

Fig8. Output Waveforms of Cut-Fault free and Cut

Fault

Fig9. Output Waveforms of MISRS

Fig10. Output waveform of Comparator

VI. CONCLUSIONS

 Proposed technique of realization optimal BIST

circuitries allows to implement test generator combining

both deterministic and pseudorandom test approaches

without changing structure or inclusion some additional

components in TG circuit. The modified Berlekamp–

Massey algorithm is suggested for calculation optimal

LFSR polynom providing implementation of test

generator. The technique has been realized as a CAD

subsystem supporting the design-for-testability of IC

and electronic devices. Practical experiments indicate

possibility to use the proposed technique and algorithms

for circuits which are implemented in both FPGA or/and

ASIC basis. But BIST circuitries can impair frequency

characteristics and die area of original circuits. The

following arrangements making in the framework of

proposed technique allow to improve the efficiency of

BIST circuitries application:

 To generate the deterministic test sequence only for

some subset of faults, and the rest faults to detect by

pseudorandom test sequence;

 To determine the best order of test patterns

generation for BILBO architecture with means to

minimize the structure of test generator.

VII. REFERENCES

[1] Mosin S.G. “State-of-the-art tendencies and

technologies of IC design”, Information technologies,

№ 1, pp. 28 – 33, 2009.

[2] Ondrej Novak, Elena Gramatova, Raimund Ubar

and collective. “Handbook of testing electronic

systems”. Czech Technical University Publishing

House., 395 p. 2005.

[3] Janusz Rajski, Jerzy Tyszer. “Arithmetic Built-in

Self-Test for Embedded Systems”. Prentice Hall PTR.

268 p. 1997.

[4] Morgan Kaufmann. “System-on-chip Test

Architectures”. Edited by Laung-Terng Wang, Charles

E. Stroud, Nur A. Touba. 893 p. 2008.

[5] Berlekamp E. R. “Algebraic Coding Theory”. New

York: McGrow Hill, 1968.

[6] Chebykina N.V., Mosin S.G. “Investigation of

structural solutions for built-in self-test of digital

circuits”. Proc. of XVI Int. conference “Information

S.SRAVANTHI, C. HEMASUNDARA RAO

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 67-74

Systems and Technologies (IST-2010)”. –N.-Novgorod,

2010. – p. 274.

[7] Mosin S., Chebykina N. “A Technique of Optimal

Built-In Self-Test Circuitries Generation”. Proc. of

IEEE East-West Design and Test Symposium

(EWDTS’2010). P. 145 – 148. 2010.

[8] A. Menezes, P. van Oorschot, S Vanstone.

Handbook of Applied Cryptography. CRC Press, pp.

191-212. 1996.

[9] Bareisa E., Jusas V., Motiejunas K., Seinauskas R.

“Functional Digital Systems Testing”. Monografija.

Kaunas Technological University. 282 p. 2006.

[10] Brglez F., Bryan D., Koiminski K. “Combinational

profiles of sequential benchmark circuits” ISCAS’89:

IEEE International Symposium on Circuits And

Systems, Portland, OR (USA), pp. 1929-1934, May

1989.

	PointTmp

