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Abstract: The structure of test system based on application built-in self-test (BIST) circuitries has been proposed. 

The main idea is oriented on minimization of hardware overheads and dealt with automatization of BIST-circuitries 

generation. Test generator based on linear feedback shift register (LFSR) provides two types of testing  

pseudorandom and deterministic. The proposed modified Berlekamp–Massey algorithm is used for generation the 

LFSR polynomial coefficients. The experimental results of technique application for some ISCAS’89 benchmark 

circuits have been shown. The entire design is modelled using Verilog language and simulation is done using Xilinx 

ISE 12.1 tool and synthesis is done using XST synthesis tool.  
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I. INTRODUCTION 

Both the development of up-to-date integrated 

technologies and the increasing complexity of designed 

electronic devices provide the growth of testing process 

complication. The testing ensures required reliability 

and quality of produced electronic devices and systems. 

But testing has influence on growth both product cost 

and time-to-market. The use of design-for-testability 

and in particular built-in selftest (BIST) approach 

should allow reducing time and cost expenses. The 

BIST-approach relies on realization special testing 

subcircuits, providing test pattern generation (TPG) and 

output responses analysis, on the same chip together 

with original circuit. One of the efficient solutions for 

TPG realization and compact representation of output 

signals is LFSR (Linear Feedback Shift Register) or 

MISR (Multiple Input Shift Register). The LFSR/MISR 

is more efficient in comparison with simple binary 

counters because requires less combinational logic per 

one flip-flop and can works on higher frequencies. The 

generated output signals of LFSR can be considered as 

pseudorandom. The structure of test system based on 

LFSR includes generator of test signals, signature 

analyzer, test controller, and also register with internal 

or external “gold” signature and comparator. All 

elements of structure are realized as separate modules 

and interact with circuit under test using primary inputs  

and outputs. The structure of test system based on 

LFSR/MISR is represented in Fig. 1. 

 

Fig. 1. The structure of test system 

             The LFSR without external input which called 

as Autonomous LFSR (ALFSR) is used for test 

generator (TG) construction. The signals of feedback 

are sum by modulo 2 and apply to LFSR input (Fig. 2). 

The generated output signals are repeated periodically. 

The maximum number of different state is equal to 2n 

−1, where n – is a LFSR digit capacity. 
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Fig. 2. Structure of Autonomous LFSR (ALFSR) 

The LFSR is described by characteristic polynomial as 

following:    

     (1) 

where n is a LFSR digit capacity;  the coefficient of 

feedback signal presents, equal to 1, if the i-th stage has 

feedback, and 0 in opposite case. 

Characteristic polynomial may be described in three 

possible ways: 

 irreducible polynomial, which cannot be split 

on polynomials of less exponent; 

 reducible polynomial, which can be 

represented by a product of simple irreducible 

polynomials; 

 primitive polynomial, is irreducible polynomial 

of exponent n, which divides polynomial 

 without remainder. 

 

In practice the characteristic polynomial should be used 

in order to provide reliable operation of LFSR/MISR 

and increase the period of output signal repeating. The 

modification of Berlekamp–Massey algorithm is 

proposed to use for generation the LFSR/MISR 

polynomial Co-efficients. The resulting polynomial 

generates specified sequence of signals of length n or n 

working cycles. Important feature of generated 

polynomial consists in the fact what exponent and 

consequently digit capacity of obtained polynomial is 

minimal and less or equal n/2.  

II. MODIFIED BERLEKAMP–MASSEY 

ALGORITHM FOR SYNTHESIS LFSR/MISR 

        A linear feedback shift register (LFSR) is a shift 

register whose input bit is a linear function of its 

previous state. The most commonly used linear function 

of single bits is XOR. Thus, an LFSR is most often a 

shift register whose input bit is driven by the exclusive-

or (XOR) of some bits of the overall shift register value. 

The initial value of the LFSR is called the seed, and 

because the operation of the register is deterministic, the 

stream of values produced by the register is completely 

determined by its current (or previous) state. Likewise, 

because the register has a finite number of possible 

states, it must eventually enter a repeating cycle. 

However, an LFSR with a well-chosen feedback 

function can produce a sequence of bits which appears 

random and which has a very long cycle. 

            An LFSR is one of a class of devices known as 

state machines. The contents of the register, the bits 

tapped for the feedback function, and the output of the 

feedback function together describe the state of the 

LFSR. With each shift, the LFSR moves to a new state. 

(There is one exception to this -- when the contents of 

the register are all zeroes, the LFSR will never change 

state.) For any given state, there can be only one 

succeeding state. The reverse is also true: any given 

state can have only one preceding state. For the rest of 

this discussion, only the contents of the register will be 

used to describe the state of the LFSR. 

            A state space of an LFSR is the list of all the 

states the LFSR can be in for a particular tap sequence 

and a particular starting value. Any tap sequence will 

yield at least two state spaces for an LFSR. (One of 

these spaces will be the one that contains only one state 

-- the all zero one.) Tap sequences that yield only two 

state spaces are referred to as maximal length tap 

sequences. 

             The state of an LFSR that is n bits long can be 

any one of 2^n different values. The largest state space 

possible for such an LFSR will be 2^n - 1 (all possible 

values minus the zero state). Because each state can 

have only once succeeding state, an LFSR with a 

maximal length tap sequence will pass through every 

non-zero state once and only once before repeating a 

state. 

            One corollary to this behavior is the output bit 

stream. The period of an LFSR is defined as the length 

of the stream before it repeats. The period, like the state 

space, is tied to the tap sequence and the starting value. 

As a matter of fact, the period is equal to the size of the 

state space. The longest period possible corresponds to 

the largest possible state space, which is produced by a 

maximal length tap sequence. 

    The modification is based on realization of the 

Berlekamp Massey algorithm described in [8]. The 

algorithm is used for construction linear feedback shift 

register with minimal length, which generates specified 

http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Exclusive-or
http://en.wikipedia.org/wiki/Exclusive-or
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binary sequence. The algorithm takes n iterations for n-

bit sequence and at N-th iterations (N < n) the LFSR 

polynom generating first N elements of sequence is 

calculated. 

Definition.  Lets is a final binary sequence 

. Lets L,C(D) is LFSR described 

by polynom  and generating 

binary sequence . The next 

difference  is difference between and (N+1)-th 

sequence element, generated by LFSR: 

             (2) 

Lets is final binary sequence and 

is LFSR generated this sequence, where L is 

LFSR length (L is linear complexity of sequence). Then 

 generates sequence  if 

and only if the next difference  is equal to 0; 

       If  , then linear complexity ; Suppose 

. Lets m is the largest integer less N, such what 

. Lets  is LFSR by length  

generating  . Then  is LFSR by minimal 

length generating , where 

     (3) 

and . Besides a minimal length 

there is additional requirement to test generator based 

on LFSR polynom describing LFSR should be primitive 

one. The structure of modified algorithm for synthesis 

LFSR/MISR is represented in Fig. 3. The CAD 

subsystem of TG realization based on the Berlekamp 

Massey algorithm has been prepared using C++ [6]. The 

checking of condition, what calculated polynom is 

primitive, is provided in software. The input data for 

software is represented by text-file with the following 

structure: first line contains the number of elements in 

sequence, second line contains the binary sequence. 

For instance: 

9 

001101110 

The output data is represented by text-file, where first 

line contains the degree of polynom, second line 

contains polynom as binary sequence and third line 

contains indicator of primitive polynom condition 

checking. 

For instance: 

Polynom degree: 5 

1 0 0 1 0 1 

Primitive 

The sequence in example above corresponds to the 

follows primitive polynom . 

 

Fig.3. Modified Berlekamp–Massey algorithm for 

LFSR/MISR generation. 

The experiment was provided for different input binary 

sequences. Some results are presented below: 

Input:        12 

                  001011110010 

Output:      Polynom degree: 6 

                  1 1 0 0 0 0 1 

                  Primitive 
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Input:         14 

                   00101001001011 

Output:       Polynom degree: 7 

                   1 0 0 0 1 1 1 1 

                   Primitive 

Input:          16 

                   0010110100001101 

Output:       Polynom degree: 10 

                   1 1 1 1 0 0 1 0 0 1 1 

                   Primitive 

Input:          16 

                   1011011100011101 

Output:       Polynom degree: 8 

                   1 1 1 1 0 0 0 0 1 

                   Primitive 

Input:          20 

                   10110111000111010010 

Output:        Polynom degree: 10 

                    1 0 0 0 0 0 1 0 1 1 1 

                    Primitive 

Calculated LFSR was described in VHDL and 

simulated in Mentor Graphics ModelSim tool. The 

results have shown absolute correspondence between 

generated sequence and input binary sequence.  

            The overwhelming majority of calculated 

polynoms is primitive one. Consequently, if the degree 

of polynom is equal L, then corresponding register is 

able to generate 2L patterns by width L. The length of 

sequence used for LFSR generation at the average is 

equal 2L. The rest (2L – 1) – L patterns can be used for 

pseudorandom testing. Thus, generated LFSR can be 

applied both for deterministic and pseudorandom testing 

without use additional combinational logic. 

III. TECHNIQUE OF LFSR/MISR GENERATION 

                The process of LFSR generation with using 

the Berlekamp–Massey algorithm can be described by 

two main stages: selection of test generator (TG) 

structure for deterministic test sequence and LFSR 

generation [7]. 

       LFSR generators produce what are called linear 

recursive sequences (LRS) because all operations are 

linear. Generally speaking, the length of the sequence 

before repetition occurs depends upon two factors, the 

feedback taps and the initial state. An LFSR of any 

given size m (number of registers) is capable of 

producing every possible state during the period N=2
m

-1 

shifts, but will do so only if proper feedback taps have 

been chosen. For example, such an an eight stage LFSR 

will contain every possible combination of ones and 

zeros after 255 shifts. Such a sequence is called 

a maximal length sequence, maximal sequence, or less 

commonly, maximum length sequence. It is often 

abbreviated as m-sequence. In certain industries m-

sequences are referred to as a pseudonoise (PN) 

orpseudorandom sequences, due to their optimal noise-

like characteristics. (Informally, even non-maximal 

sequences are often called pseudonoise or 

pseudorandom sequences.) 

              Technically speaking, maximal length 

generators can actually produce two sequences. The 

first--the trivial one--has a length of one, and occurs 

when the initial state of the generator is set to all zeros. 

(The generator simply remains in the zero state 

indefinitely.) The other one--the useful one--has a 

length of 2
m

-1. Together, these two sequences account 

for all 2
m
 states of an m-bit state register. When the 

feedback taps of an LFSR are non-maximal, the length 

of the generated sequence depends upon the initial state 

of the LFSR. A non-maximal generator is capable of 

producing two or more unique sequences (plus the 

trivial all-zeros one), with the initial state determining 

which is produced. Each of these sequences is referred 

to as a state space of the generator. Together, every non-

maximal sequence the generator can produce accounts 

for all 2
m
 states of an m-bit state register. 

Properties of non-maximal sequences are generally 

inferior to those of maximal sequences. So the use of 

non-maximal sequences in real systems is usually 

avoided in favor of their maximal-length counterparts. 

1) Deterministic sequence of test patterns can be defined 

using any well-known methods of test generation for 

sequential circuits [9]. The obtained test sequence is 

represented as matrix, which contains binary test 

patterns (Table 1). 

TABLE 1 
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REPRESENTATION OF TEST SEQUENCE 

 

 

There are two main ways to generate test patterns: 

sequential and parallel. The first way relies on the use 

only one LFSR generated each next pattern after p steps, 

where p is a number of bits in a test pattern. During 

parallel way the test patterns are generated at each step 

of TG functioning, which consists of LFSRs. 

Sequential way of test pattern generation: Test 

sequence is specified in line (Table 2) and applied to 

processing in CAD subsystem for LFSR polynom 

calculation. 

TABLE 2 

LINEARIZED TEST SEQUENCE 

 

     The set of coefficients for the LFSR polynom are 

calculated in results of subsystem execution. The length 

of polynom will be equal to the number of bits in test 

pattern. The initial bits of test sequence initiate the 

register. 

 

Fig. 4. Sequential test generator based on LFSR: 

a) MSB = 1, b) MSB = 0 

A LFSR described by polynom with most significant bit 

equal 1 is shown in Fig. 4, a and a LFSR described by 

polynom with most significant bit equal 0 is represented 

in Fig. 4, b. 

Parallel way of test pattern generation: Here the 

independent LFSR is used for generation each bit of a 

test pattern. The columns of Table 1 are used as input 

sequence for polynoms calculation of each LFSR. The 

structure of parallel test generator is represented in Fig. 

5. 

 

Fig. 5. Parallel test generator 

Both parallel and sequential test generators use at the 

average the same number of flip-flops. If the length of 

test pattern is equal p and length test sequence is equal 

to n, then length of LFSR is (n - p)/ 2 . 

The length of each LFSR of parallel generator is n / 2 . 

Consequently the same (n - p) 2 flip-flops will be 

required for realization of p parallel-working LFSR. 

Both types of test generator (sequential and parallel) are 

used in practice. 

IV. IMPLEMENTATION OF TEST CIRCUITRIES 

AND SIMULATION RESULTS 

          Proposed technique was put on trial for 

benchmark circuits from ISCAS’89 [10]. The following 

frequency characteristics have been obtained for 

different implementation of BIST-circuitries (LFSR as 

well as BILBO – Built-In Logic Block Observer) in the 

basis of FPGA using proposed technique. The synthesis 

has been done for Xilinx FPGA Virtex-5 XC5VSX50T 

(Table 3): 

TABLE 3  

THE RESULTS OF SYNTHESIS FOR FPGA 
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         Test circuitries have been implemented also in the 

basis of standard cells using CMOS 0.35 um integrated 

technology. The Mentor Graphics CAD tools were used 

for ASIC standard cells synthesis. The aggregate results 

of synthesis for ISCAS’89 circuits s27 and s386 with 

two possible realization of test circuitries (LFSR and 

BILBO) are represented in Tables 4 and 5. 

TABLE 4 

THE RESULTS OF S27 SYNTHESIS 

 

TABLE 5 

THE RESULTS OF S386 SYNTHESIS 

 

The results of test circuitries synthesis show the 

reducing maximum working frequency of original 

circuits, increasing both a number of components and a 

die area. The essential increasing a complexity and a die 

area of circuit deals with simplicity of original circuits, 

when initial number of components is proportional to a 

number of components in test circuitries. Test 

generators for both circuits generate test patterns which 

provide coverage 100 % s-a faults using only 

deterministic test. The structure of generators in both 

cases is optimal and compact. 

Comparing results of test circuitries implementation in 

basis LFSR and BILBO the following conclusion can be 

obtained – the efficiency of LFSR for simple circuits is 

higher in contrast to a BILBO. But BILBO architecture 

more efficient for test generator and signature analyzer 

implementation than LFSR/MISR architecture for 

complex circuits which contain many flip-flops and also 

in the case when original circuits can be split on two 

subcircuits and their testing is realized independent by 

changing working mode of BILBO-blocks. 

V. SIMULATION RESULTS 

 

Fig6. Output Waveform of Top level Module BIST 

 

Fig6. Output Waveform of LFSR 

Fig7. Output waveform of controller  
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Fig8. Output Waveforms of Cut-Fault free and Cut 

Fault 

 

Fig9. Output Waveforms of MISRS 

 

Fig10. Output waveform of Comparator 

VI. CONCLUSIONS 

          Proposed technique of realization optimal BIST 

circuitries allows to implement test generator combining 

both deterministic and pseudorandom test approaches 

without changing structure or inclusion some additional 

components in TG circuit. The modified Berlekamp–

Massey algorithm is suggested for calculation optimal 

LFSR polynom providing implementation of test 

generator. The technique has been realized as a CAD 

subsystem supporting the design-for-testability of IC 

and electronic devices. Practical experiments indicate 

possibility to use the proposed technique and algorithms 

for circuits which are implemented in both FPGA or/and 

ASIC basis. But BIST circuitries can impair frequency 

characteristics and die area of original circuits. The 

following arrangements making in the framework of 

proposed technique allow to improve the efficiency of 

BIST circuitries application: 

 To generate the deterministic test sequence only for 

some subset of faults, and the rest faults to detect by 

pseudorandom test sequence; 

 To determine the best order of test patterns 

generation for BILBO architecture with means to 

minimize the structure of test generator. 
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