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Abstract: In this project, many of the laws of nature — lygics, chemistry, biology, engineering and astnopdind their
most natural expression in the language of difféaerquations. In other words, differential eqoat are the language of
nature. Applications of differential equations alwound in mathematics itself, especially in geoynahd harmonic analysis
and modeling. Differential equations occur in eaoigs and systems science and other fields of mattieah science. Many
physical and engineering problems when formulatethe mathematical language give rise to partifiedintial equations.
Besides these, partial differential equations gy an important role in the theory of elasticibydraulics etc. Since the
general solution of a partial differential equationa region R contains arbitrary constants orteahy functions, the unique
solution of a partial differential equation corresgding to a physical problem will satisfy certaither conditions at the
boundary of the region R. These are known as bayramaditions. When these conditions are speciiiedhe time t = 0, they
are known as initial conditions. A partial diffeteh equation together with boundary conditions stidntes a boundary value
problem. In the applications of ordinary linearfeiiéntial equations, we first find the general solu and then determine the
arbitrary constants from the initial values. Bué t,tame method is not applicable to problems inughpartial differential
equations. Most of the boundary value problemsliring linear partial differential equations can $@ved by the method of
separation of variables. In this method, right frihra beginning, we try to find the particular s@uas of the partial differential
equation which satisfy all or some of the boundeonditions and then adjust them till the remainaumnditions are also
satisfied. A combination of these particular saln$ gives the solution of the problem. In this ihese are solving variety of
differential equation in the field of applied sabes and engineering and also finding how the swiutif differential equation
provide the agreement with real life problems.His thesis, we are describing not only ordinaryedéntial equation but also
partial differential equation.

Keywords:. Partial Differential Equation, Ordinary Differentiaquation(ODE).

I.INTRODUCTION
A. Introduction to Differential Equation

language of differential equations. Putting in oth®rds,
differential equations are the language of nature.

A differential equation is an equation riglgt some
functionf to one or more of its derivatives. An example is

2

f[x]-l—Z:r%f(x]-l—f[xj =sinx 1)

dx?

It is obvious that this particular equatiorvatves a
function f together with its first and second datives.
Any given differential equation may or may not ihxe f
or any particular derivative of f. But, for an etjoa to be
a differential equation, at least some derivati¥ed must
appear. The objective in solving an equation likgi&ion
(1) is to find the function f. Thus we already pEve a
fundamental new paradigm: When we solve an algebrai
equation, we seek a number or perhaps a colleaifon
number, but when we solve a differential equatie@nseek
one or more functions. Many of the laws of naturen—
physics, in chemistry, in biology, in engineerirand in
astronomy — find their most natural expression lie t

Applications of differential equations also abouim
mathematics itself, especially in geometry and Ioanim
analysis and modeling. Differential equations ocaur
economics and systems science and other fields of
mathematical science. It is not difficult to pexeeiwhy
differential equation arises so readily in the scés. If

y=1%)is a given function, then the derivative df /dxca
be interpreted as the rate of change of f witheesfo x.
In any process of nature, the variables involvedrafated
to their rates of change by the basic scientifingples,
that govern the process that is, by the laws afreatWhen
this relationship is expressed in mathematical trmtathe
result is usually a differential equation.

1. Ordinary Differential Equation

An ordinary differential equation (ODE) is dferential
equation in which the unknown function (also knoas
the dependent variable) is a function of a single
independent variable. In the simplest form, the nown
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function is a real or complex valued function, bnbre
generally, it may be vector-valued or matrix-valuéus
corresponds to considering a system of ordinary
differential equations for a single function. Oralin
differential equations are further classified acdéog to the
order of the highest derivative of the dependemtatte
with respect to the independent variable appearinthe
equation. The most important cases for applicatiares
first-order and second-order differential equatiof®r
example, Bessel's differential.

dv  dy

axzar ' ? @)
2. Partial Differential Equation

In Mathematics, a partial differential equati@DE) is
a differential equation that contains unknown nvaltiable
functions and their partial derivatives. Partiafetiential
equations (PDEs) are used to formulate problemlvirvgp
functions of several variables, and are either esblpy
hand, or used to create a relevant computer m&dEs
can be used to describe a wide variety of phenorsaola
as sound, heat, electrostatics, electrodynamici] flow,
or elasticity. These seemingly distinct physicatépbmena
can be formalized identically in terms of PDEs, ethi
shows that they are governed by the same underlying
dynamic. Just as ordinary differential equationserof
model one-dimensional dynamical systems, partial
differential equations often model multidimensional
systems. PDEs find their generalization in stodbautrtial
differential equations.

3. Linear Differential Equations:
A linear differential equation is any diffete
equation that can be written in the following form.

@, (Y™ () + a,, @y (1) + o+ a@y(t) =g(t)  (3)

The important thing to note about linear diffgial
equations is that there are no products of thetimmcy(t),
and its derivatives and neither the function or its
derivatives occur to any power other than the fiswer.

The coefficientgz (), - - oy (0 and g(t) can be zero
or non-zero functions, constant or non-constanttfons,
linear or non-linear functions. Only the functiofgt), and
its derivatives are used in determining if a difetial
equation is linear.

4. Non-Linear Differential Equations:
If a differential equation cannot be written in tioem,
(3) then it are called a non-linear differentialiatjon.

5. Homogeneous Ordinary Differential Equation:

A linear ordinary differential equation of erh is said
to be homogeneous if it is of the form and theredgerm
that contains a function afalone.

a, (v + o, ()Y g, (x)y +a 1)y =0 (g

dy . . .
Where v = d—} i.e., if all the terms are proportional

-
to a derivative of y (or y itself) and there is tesm that
contains a function ok alone. However, there is also
another entirely different meaning for a first-ardedinary
differential equation. Such an equation is said b®
homogeneous if it can be written in the form.

dy v
=~ -F() )

Such equations can be solved in closed form bghla@ge

of variables ™ = ¥ /% which transforms the equation into
the separable equation

g_ du
x Flu)—u (6)

6. Non-Homogeneous Differential Equations

Non-homogeneous differential equations are shime
as homogeneous differential equations, except tay
have terms involving onlx (and constants) on the right
side, as in this equation:

d

d*y .
- +XT+}" =6x+3
2

dx*

)

You also can write non-homogeneous differéntia
equations in this format

Y +pl)y'+qlx)y = g(x) ®)

The general solution of
differential equation is

this non-homogeneous

¥ =e(x) +yy(x) + ¥, (%) 9

In this solution, c1¥1(x) + c;,3:2(x) js the general
solution of the corresponding homogeneous difféaént
equation:

V' +p)y tax)y=0 (10)

And »=(x) is specific solution to the non-
homogeneous equation.

7. Original Differential Equation:
Consider the second order differential equmti

dzy_f( d}f)
dx? x’}’dx

(11)
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dy
By putting E = Z | it can reduced to two first order

simultaneous differential equations

dy _ q_ ( )
—, = Zzan dx—fx,},x (12)

Which can be solved easily because equatid i€l
second order differential equation, in this way igt
converted in to first order simultaneous differahti
equation so we can solve equation (12) easily. syslem
of equation (11) is known as original differentégjuation.

II.REVIEW OF LITERATURE

Berezmaret al. (1986) [3] had published an article
“Calculation of the Eigen values of Mathieu’s eqoat
with a complex parameter”. In this article he geue
effective numerical algorithm suggested for caltintathe
Eigen values of Mathieu's differential equation withe
parameter of the equation takes complex values faom
fairly wide range of variation. The algorithm isdea on
using the theory of continued fractions. The edficiy of
the algorithm is verified by a series of numerical
experiments and by comparing them with known
numerical data. McCoy and Boersma (1986) [22] dtate
that the axial growth of plant tissue obeys thesjtgl laws
of energetic during deformation of a continuous med
The concept of biological energy conservation was
employed to formulate a mathematical model of apiaht
growth. The model was derived from a statementhef t
exchange of the thermodynamic potential energy with
kinetic energy of deformation. This derivation dasst
invoke a force balance analogy with simple mechanic
systems and has no turgor dependence. The dedsativ
with respect to tissue strain of the turgor, osmpttential
and extent of the biosynthetic reactions, therefak
participate in the performance of the work of grlowthe
model formulation is unique to plant growth studsisce
it combines principles of mechanical energy coreséon
during deformation with a chemical thermodynamic
description of the potential energy. The concept the
change of the thermodynamic potential energy peror
the work of deformation is more general and appliedo
biological systems than the currently employed dorc
balance approach.

J.C. Butcher (1992) [6] proposed the role hagonal
polynomials in numerical ordinary differential edjoas.
Orthogonal polynomials have many applications to
numerical ordinary differential equations. Sometluése,
especially those connected with the quadrature dtaenon
which many differential equation methods are baaesl to
be expected. On the other hand, there are manyisiagp
applications, quite unlike traditional uses of ogdbnal
polynomials. This paper surveys many of these
applications, especially those related to accuracd

implement ability of Runge-Kutta methods. Stevensl.
(2009) [28] stated that an extension was proposethé
Local Hermitian Interpolation (LHI) method; a mesés
numerical method based on interpolation with sraaldi
heavily overlapping radial basis function (RBF) teyss.
This extension to the LHI method used interpolation
functions which themselves satisfy the partial etiéhtial
equation (PDE). In this way, a much improved
reconstruction of partial derivatives was obtairmegulting

in significantly improved accuracy in many caseteT
implementation algorithm was described, and was
validated via three convection diffusion- reaction
problems, for steady and transient situations. Aankr
Nicolson implicit time stepping technique was ugadthe
time-dependent problems. A form of ‘analytical
upwinding' was implicitly implemented by the usetb&
partial differential operator of the governing etjom in
the interpolation function, which included the dedi
information about the convective velocity field.

Abbas et al. (2010) [26] described “Darboux problem
for impulsive partial hyperbolic differential eqiats of
fractional order with variable times and infiniteldy”. He
dealt with the existence of solutions to impulspatial
functional differential equations with impulses\airiable
times and infinite delay, involving the Caputo fianal
derivative. This works was considered by using tbe-
linear alternative of Leray-Schauder type. Wen al.
(2010) [32] published a paper “Dissipativity and
asymptotic stability of non-linear neutral delayteigro-
differential equations”. It was concerned with the
dissipativity and asymptotic stability of the thetical
solutions of a class of non-linear neutral delategno-
differential equations (NDIDEs). They first gave a
generalization of the Halanay inequality which gdyan
important role in the study of dissipativity andlstity of
differential  equations. Then, they applied the
generalization of the Halanay inequality to NDID&sd
the dissipativity and the asymptotic stability kswf the
theoretical solution of NDIDEs. From a numericalpaf
view, it was important to study the potential ofrmerical
methods in preserving the qualitative behavior bé t
analytical solutions. It provided the theoreticalifidation
for analyzing the dissipativity and the asymptdiability
of the numerical methods when they were appliethése
systems was validated.

Han et al. (2013) [17] published an articke partial
differential equation formulation of Vickrey's btatneck
model: methodology and theoretical analysis”. The
continuous-time Vickrey model can be described hy a
ordinary differential equation (ODE) with a righitand
side which is discontinuous in the unknown variallech
a formulation induced difficulties with both thetoal
analysis and numerical computation. It was widely
suspected that an explicit solution to this ODE -doet
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exist. They advanced the knowledge and understgrufin
the continuous-time Vickrey model by reformulatibhgs a
partial differential equation (PDE) and by applyirg
variational method to obtain an explicit solution
representation. Such an explicit solution was tfteswn to
be the strong solution to the ODE in full mathemeilti
rigor. This methodology also leaded to the notidn o
generalized Vickrey model (GVM), which allowed the
flow to be a distribution, instead of an integrahlaction.
This feature of traffic modeling is desirable iretbhontext
of analytical dynamic traffic assignmer(DTA). The
proposed PDE formulation provided new insights itite
physics of the Vickrey model, which leaded to a bemof
modeling extensions as well as connection witht-firsler
traffic models such as theighthill-Whitham-Richards
(LWR) model. The explicit solution representatiolsca
leaded to a new computational method.

Tohidi et al. (2013) [29] published an artict&
collocation method based on Bernoulli operationatrir
for numerical solution of generalized pantograph
equation”. This paper presents a direct solutiahn@ue
for solving the generalized pantograph equationh wit
variable coefficients subject to initial conditionssing a
collocation method based on Bernoulli operationatrir
of derivatives. Only small dimension of Bernoulli
operational matrix is needed to obtain a satisfgatesult.
Numerical results with comparisons are given tofican
the reliability of the proposed method for genedi
pantograph equations.

[1I.METHODOLOGY

The differential equation is an equation vimich
dependent variable independent variable and derévaff
differential equation occur simultaneously. Manygibal
and engineering problems when formulated in the
mathematical language give rise to partial difféedn
equations. Besides these, partial differential 8goa also
play an important role in the theory of Elasticity,
Hydraulics etc. Since the general solution of atiglar
differential equation in a region R contains aeiyr
constants or arbitrary functions, the unique solutof a
partial differential equation corresponding to aygbal
problem will satisfy certain other conditions ateth
boundary of the region R. These are known as baynda
conditions When these conditions are specifiedfertime
t = 0, they are known as initial conditions. A peirt
differential equation together with boundary corudis
constitutes a boundary value problem. In the appbas
of ordinary linear differential equations, we fifsnd the
general solution and then determine the arbitranstants
from the initial values. But the same method is not
applicable to problems involving partial differeaiti
equations. Most of the boundary value problemslinrg
linear partial differential equations can be sohmdthe
method of separation of variables. In this methaght

from the beginning, we try to find the particulaigions
of the patrtial differential equation which satisfly or some
of the boundary conditions and then adjust themthi
remaining conditions are also satisfied. A comborabf
these particular solutions gives the solution efphoblem.

A. Separation of Variables

In this method, we assume the solution tchiegoroduct
of two functions, each of which involves only onketoe
variables. The following examples explain this noeth

1. Variables Separable
If a differential equation can be written hretform
fy)dy = @(x)dx (13)
We say that variables are separaplen left hand side

andx on right hand side. We get the solution by intégga
both sides.

Working Rule:
Stepl: Separate the variablesfdy)dy = ¢(x)dx
Step 2: Integrate both sides [a&y)dy = [ (x)dx
Step 3: Add an arbitrary constant C on R.H.S.

2. Homogeneous Differ ential Equations

Working Rule:

Step 1: put y=vx so thaf;d}- =v+x _:;-;
Xx Xx
Step 2: Separate the variables.

Step 3: Integrate both the sides.
Step 4: Puty = i—’

3. Linear Differential Equations
A differential equation of the form

dy _
T Py=¢0 (14)
Working Rule:

Step 1: Convert the given equation to the stanétzimd

of linear differential equation

Y opy=
e, dx T¥YTC
;
Step 2: Find the integrating factor i.e. I.F‘f?‘:P =

Step 3.Then the solution i (I.F.) = [ Q[LE.]Jdx + C
4. Equations Reducible To the Linear Form (Bernoulli

Equation)
The equation of the form

ax T Py =@ (15)
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5. Exact Differential Equation

An exact differential equation is formed byredily
differentiating its primitive (solution) without gnother
process

Mdx + NfijJ =0 (16)
Step 1: Integrate M w.r.t. x keeping y constant.

Step 2: Integrate w.r.i, only those terms dil which do
not contairnx.

Step 3: Result of 1 + Result of 2 = Constant.

Complete Solution=Complementary Function +
Particulategral a7

Let us consider a linear differential equatadrthe first
order

Y . pq=
e 81

Its solution is }FE'F?"H = I[Qe‘rwx )dx +C
y=C.F. +P.L

B. Method for Finding the Complementary Function
Step 1: In finding the complementary function, FSHof
the given equation is replaced by zero.

Step2: Lety =€ 1€ ™ bethe C.F. of
) 4 + 0
; y=
dx? dx @ (19)

Solution is

y.e ™F = [(c,e™*) (e )dx 4 ¢

=,

C.F.= [Cl+ C:.’I]E‘m'—x (20)

——x" sinax.
To Find the Value off (D)

?IEI_EEI n
—1¢

i) f0+ig "
1

1
—}x sinax = Imaginary part oft fax

- 1" (cosnx +isinax) =

7
\DJ

- X
F(D+ia)

1
f(D+ia)

o x" coSax = Real part ofe™ 1" (21)

ik

General Method of Finding the Particular Imgg@f
any Function® (x) is:

1
p_a W=y (22)

P.I=

Cauchy Euler Homogeneous Linear Equations

a d”v+ 2,y x"1 Ty ~+a, ¥ = 0(x)
n¥n dxm 1% ax™ 1T g ¥

(23)

Where @ a;, @&,.......... are constants,
homogeneous equation. or

is called a

=
2

.d
2~ = pD- 1
= ( Jy

(24)

3

Y _ D(D— 1)(D-2
Similarity * dx3 (=2

C. Method of Variation of Parameters
To find particular integral of

e
dx* de (25)

il

Working Rule:
Step 1: Find out the c.fi.e AyBy,
Step 2: Particular integral = iy,
Step 3: Find u and V by the formulae

- nk »nx
n= ?dx, 7= ?dx
¥ ~hh Y =hh (26)

D. Simultaneous Differential Equations

If two or more dependent variables are fundiof a
single independent variable, the equations invglvimeir
derivatives are called simultaneous equations, e.g.

dx

E-i‘ 4y =1t

dy .

E-sz—e 27)

The method of solving these equations is basethe
process of elimination, as we solve algebraic diamadous
equations.

IV.RESULTS OF EXPERIMENT
A. Application Of Differential Equation
1. Growth and Decay Problems
Let N (t) denotes the amount of substance (or
population) that is either growing or decaying. i
assume that dN/dt, the time rate of change ofahisunt

International Journal of Scientific Engineering and Technology Resear ch
Volume.02, IssueNo.19, December-2013, Pages.2208-2217



ABDULQADER |BRAHIM ABED, DR. RAJEEV KUMAR KHARE

of substance, is proportional to the amount of wuize
present, then dN/dt = kn, or

AN
— —KN=0
dt (28)

Wherek is the constant of proportionality. We are
assuming thal (t) is a differentiable, hence continuous,
function of time. For population problems, wheNdt) is
actually discrete and integer-valued, this assumpis
incorrect. Nonetheless, still provides a good apipnation
to the physical laws governing such a system.

Problem: A person places $20,000 in a savings account
which pays5 percent interest per annum, compounded
continuously, Find (a) the amount in the accoutdrahree
years, and (b) the time required for the accounioidble in
value, presuming no withdrawals and no additional
deposits.

Solution: Let N (t) denote the balance in the account at
any time t. Initially, N (0) = 20,000. The balante the
account grows by the accumulated interest payments,
which are proportional to the amount of money ie th
account. The constant of proportionality is theiast rate.

In this case, k = 0.05 and equation (29) becomes

dN
— —0.05N =10
dt (29)

This differential equation is both linear aseparable.
Its solution is

N(t) = ce?05t (30)

At t=0, N (0)= 20,000, which when substituted into

— 0.05(00 _—
(31) yields 20,000 = ¢ce® % = ¢\ hic value
of ¢, (31) becomes

N(t) = 20,000e%% 31)

Equation (31) gives the dollar balance in theoant at

any time t. substituting = 3 into (31), we find the
balance after three years to be

N(3) = 20,000¢%%5¢3)
=20,000(1.161834) = $23,236.68

We seek the timeat which N(t)= $40,000. Substituting
these values into (31) and solving fowe obtain

L0k
2 -

40,000 — 20,000e™™ = g

2. Vertical Motion

Problem: A particle falls under gravity in a resisting
medium whose resistance varies with velocity. Fihd
relation between distance and velocity if initialthe
particle starts from rest.

Solution: By Newton’s second law of motion, the equation
of motion of the body is

L’d}f_ ; R VdV_ -
m . =mg — m« T =g
Vdv — S dV+g av - iy
g-—kv k kg=k o (32
Integrating, we get

Vogr 1

—E-I-E(—E)log(g—w]—x-l-,ﬁl

Vo g _
—E—Flogﬂg—klﬂ—x+ﬁl (33)

g

——,.,1 =4
Initially, x=0,V=10, k* 88

, Now (33) becomes

V g g
—E—Flog(g—kl’]=x—ﬁlogg
V g 1 (g— kV)
kK2 g (34)
3. Beam

A bar whose length is much greater than iBssf
section and its thickness is called a beam.

Supported beam: If a beam may just rest on a stfibera
knife edge is called a supported beam.

Fixed beam: If one or both ends of a beam are ¥iffinkd
then it is called fixed beam.

Cantilever: If one end of a beam is fixed and ttileeoend
is loaded, it is called a cantilever.

Bending of Beam: Let a beam be fixed at one endthed
other end is loaded. Then the upper surface isgated
and therefore under tension and the lower surface i
shortened so under compression.

Neutral Surface: In between the lower and uppefasar
there is a surface which is neither stretched nor
compressed. It is known as a neutral surface.

Bending Moment: Whenever a beam is loaded it deflec
from its original position. IM is the bending moment of
the forces acting on it, then
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R (35)

Where, E =Modulus of elasticity of the beam,
| = Moment of inertia of the cross-section of beam
about neutral axis.
R = Radius of curvature of the curved beam

Thus equation (35) becomes
d*y
M = EI —:f,
dxs (36)
4. Boundary Conditions
1. End freely supported. At the freely supported end
there will be no deflection and no bending moment.
da®y

v=0 I 37)

2. Fixed end horizontally. Deflection and slope of
the beam are zero.

y=0,2=0 (38)
dx"

3. Perfectly free end. At the free end there is no
bending moment or shear force.

—=0,—=0 (39)

5. Convention of signs
The sign of the moment about Nbdh the left NN is
positive if anticlockwise and negative if clockwise

The downward deflection is positive and lengtbn right-

o
side is also positive. Sloﬁ is positive if downward.
Problem: The differential equation satisfied by a beam

uniformly loaded (W kg/metre) with one end fixeddahe
second end subjected to tensile foree is given by

-

E.I d’y P 1W :
e =Py ——Wx-
dx? - 2 (40)
Show that the elastic curve for the beam withditions
}r=ﬂ=? atx = 0, is given by
L

Wix®

2p

,where ;2 = £
Er

y = % (1 — coshnx) +

Solution:

We have, E.I 1

~Wx? (41)

s

dz}'
;= Py —
dx

dly P , P w
AL I N
dc* E 2E.1 E.L 2E.L
AEis
P T P 1
m—-——=0 = m=—=n" = m=1in
E.] E.L

1 W . W 1 5
P.I.= (— )x‘=— - —x
p2_ P\ 2EL 2E.1.D?—n?
E.I
W p\? W D W .2
) 1 =, \ =_, (x \ )
Rl 7 ncE.l n InE.L ne
X —hnx W 2 2
ymaet o tomr(hE)  wy
Differentiating (42) w.r.t. X, we get
EE"U p— nx —nx W 2
I ncye oo e + anE.I.( x) (43)
. dy . S -
PuttingX = IJ,d—:’ = 0 in (43), we get™™ ? 474
&
Puttingx= 0,y = 0in (42), we get
0 ++ vz = 0 e+ v
T AT QT 30 I TATRTREL (44)
Putting ¢=0, in (44), we get
0= 20, + = S
N C; n°E.L T TR
nt=— = n*E.l.=P
Now E. I
B W
T 2T 2
Putting the values of1and€z2 in (42), we get
y= — (™ + ™) + E(:f; + i)
© 2n?P 2P n?
W LW w
vy = ﬂzpcoshﬂx + Ex 4+ P
. - h oL W
Y= gz (1= coshnx) "+ —2 (45)

Problem: An infinitely long plane uniform plate is
bounded by two parallel edges and an end at rigfiea to
them. The breadth is. This end is maintained at a
temperature gat all points and other edges are at zero
temperature. Determine the temperature at any pditite
plate in the steady state.
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Solution: In  the
uxy) o any point? (1Y) satisfies aplace’s equation

steady state, the temperature

-

g u
dx?

g% u
+5—5 =0
dy= (46)

Under the boundary conditions:

u(0,y) = 0 vy (47)
ulm, v) — 0wy 148
ulx,m)=0iN0 < x = = (49)
u(x,0) = uy ; d<x<m (50)

Let us assume
Then the equation (46) reduces to

jrtY-l-Xirlr:ﬂ (51)

X ¥ (52)
Where k is separation parameter.

Case 1: Wherk> 0, Say k=P, wherepis real. and

¥V =C5cos py +C,sinpy.

Hence
u (x,y) = (€ e?* + C,e™P*)(Cycospy + €, sinpy) (53)

Case 2Whenk < 0, Say k= —p?, wherep is real.
X =C;cospx + C;sinpx
and Y= C,eP¥ +Ce™™
Hence

ulx,y) = (€, cospx + C, sinpx) (Ce% + Ce ™) (54)

Case 3: When K=G¥ — €3x +C 15 and
X=Cy v+ Cys

Hence
w(x,y) = (Cs x+ C 1) (Cpy¥ + C 13) (55)

The equation (53) and (55) do not satisfy tinery
conditions. The only possible appropriate solui®if54),
ie.,

wl(0.yv) = O (C3eP¥ + Coe ™ ¥) =0

Hence
wlx.v) = Cosinpx (CoeP¥ + C.e™P¥)
or ulx,v) = sinpx (C3'eF¥ 4+ C,'e7F¥)
Again
u(m,y) = sinpx (C;'eP¥ + C'e™P¥) =0 V.
sinpm = 0 = sinnm

p=n

Again u(x,m)=0 = (;=0
Thus we haveu(x,y) = C;sinnx. e ™
u, (x,v) = b, sinnx e™™

Hence the most general solution satisfyingottvendary
conditions is of the form

L=
u(x,y) = Z w, (x,3) = Z b, sinmx. ™™
n=1

(56)
Then u(x,0)= uy= X, b, sinnx (57)
Now ugy= X-_,b, sinnx
2 r Iu
=>b=—l- sinne = —2[1— (—1)*
o= 2 [ ugsinme = 2201 - -1y
o
0, 1 is odd
—[ 4uy .
—_ n ig even.
nmw
Hence or
dugr 1-3-. 1_5_‘
ulry) =—|eVsimrt-e™ sindrd-e ™ sin S+
T 3 § (58)

which is the required solution. After consideringuamber
of problems based on different types of differdntia
equations, we found that the solutions of all défdial
equations satisfied the phenomena on theoreticas laand
they belong to various category of differential atjpns
described which are very useful in real life sashfluid
engineering, biomedical, bioinformatics etc.

V. SUMMARY AND CONCLUSION

It has been observed that differential equmsti can
describe any phenomena and the given conditions are
completely solvable to find various results. In ofest 1 we
are giving some introductory concept of differehtia
equation and some basic concepts related to diffafe
equation like degree order homogenous and non-
homogenous differential equation with governingatpn.
In chapter 3 we are describing the complimentangcfion
with some suitable example and the Cauchy equation,
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Laplace equation, heat equation and wave equation b
using separation of variable and finally we arevisg
Laplace equation in polar form. In chapter 4 after
considering number of problems based on differgpeg

of differential equations, we found that the saos of all
differential equations satisfied the phenomena of
theoretical basis. The various category of difféedn
equations described in the phenomena are genuime. T
deflection u(x, y, t) of a rectangular membraneyasg
membrane and an infinitely long plane uniform plate
bounded by two parallel edges and an end at riggjiea to
them etc. was found which showed a very good ageeém
with the physical results .In this chapter ourtfipsoblem

is growth and decay problems here we are taking thi
problem in only for the calculation of birth andatle rate
but it can be also easily implemented on the fiefd
financial mathematics problem just like calculatiointhe
profit and loss gain in any year by a businessgasibnal
Similarly we are taking second problem diluticolgems
this problem was described a example of tank bcarit be
also used in chemical engineering problem regarding
solvent, solute and dissolveness of any matarealf we
are implementing this problem in the field of etect
circuit and computing different electric constarst third
problem is vertical motion is used in the projeatiof
satellite, aerodynamics so we are explain it bypsm
example next we explain simple harmonic motion this
very useful in wave motion just like progressiveveiathis
phenomenon was not only arising in macroscopic also
microscopic particle motion and finally we are désiag
projectile motion to describe this types of motiwe are
using Newtons law of motion and many times we aiagi
vectors law.

We are also describing various features of BE#nd
solving the governing equation by analytical methud is
very useful for mechanical engineers. This difféien
equation are ordinary differential equation but walso

describe Heat equation, wave equation and Laplace

equation these equation are second order diffadenti
equation we are solving it by separation of vagadohd we
are also deriving the governing equations such eatH
equation, wave equation and Laplace equation. Sivee
know that in case of ordinary differential equatioe are
taking only one independent variable but in caspaofial
differential equation we are taking more than one
independent variable so partial differential ecuati
provides more flexibility to design any Mathematida
comparison to ordinary differential equation. Sowna
days we are using very frequently partial differa@nt
equation but this is not meaning that ordinaryedihtial
equation have minimum scope both partial diffemdnti
equation and ordinary differential equation haiféecent
entity and having different characteristic so to aoy
problem we have to know both ordinary as well adigda
differential equation.

Future aspects:

In this thesis, we used analytical method golving
differential equation but many times we have séet is
not always possible to avoid these types of diffies. We
need numerical scheme but here we are using only
analytical approach. In future we can extend ourkvand
try to solve these problems by numerical methodnWa
times boundary condition was not smooth and stahd&o
in this type of situations, we cannot provide cogeat
solution just like drawing coating flow, burning oéndle
in these types of situations one boundary is &irel other
is varying very rapidly. This type of problems isown as
moving boundary value problem.
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