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Abstract: Although redundant addition is widely used to design parallel multi-operand adders for ASIC implementations, the 

use of redundant adders on Field Programmable Gate Arrays (FPGAs) has generally been avoided. The main reasons are the 

efficient implementation of carry propagate adders (CPAs) on these devices (due to their specialized carry-chain resources) as 

well as the area overhead of the redundant adders when they are implemented on FPGAs. This paper presents different 

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They present a fast critical path, 

independent of bit width, with practically no area overhead compared to CPA trees. Along with the classic carry-save 

compressor tree, we present a novel linear array structure, which efficiently uses the fast carry-chain resources. This approach is 

defined in a parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or vendor. A 

detailed study is provided for a wide range of bit widths and large number of operands. Compared to binary and ternary CPA 

trees, speedups of up to 2.29 and 2.14 are achieved for 16-bit width and up to 3.81 and 3.11 for 64-bit width. 

Keywords: Computer Arithmetic, Reconfigurable Hardware, Multi-Operand Addition, Redundant Representation, Carry-Save 

Adders. 

I. INTRODUCTION 

     The use of Field Programmable Gate Arrays (FPGAs) to 

implement digital circuits has been growing in recent years. 

In addition to their reconfiguration capabilities, modern 

FPGAs allow high parallel computing. FPGAs achieve 

speedups of two orders of magnitude over a general-

purpose processor for arithmetic intensive algorithms. 

Thus, these kinds of devices are increasingly selected as the 

target technology for many applications, especially in 

digital signal processing hardware accelerators 

cryptography and much more. Therefore, the efficient 

implementation of generalized operators on FPGAs is of 

great relevance. The typical structure of an FPGA device is 

a matrix of configurable logic elements (LEs), each one 

surrounded by interconnection resources. In general, each 

configurable element is basically composed of one or 

several n-input lookup tables (N- LUT) and flip-flops. 

However, in modern FPGA architectures, the array of LEs 

has been augmented by including specialized circuitry, such 

as dedicated multipliers, block RAM, and so on. 

     In the authors demonstrate that the intensive use of these 

new elements reduces the performance GAP between 

FPGA and ASIC implementations. One of these resources 

is the carry-chain system, which is used to improve the 

implementation of carry propagate adders (CPAs). It 

mainly consists of additional specialized logic to deal with 

the carry signals, and specific fast routing lines between 

consecutive LEs, as shown in Fig.1. This resource is 

presented in most current FPGA devices from low-cost 

ones to high-end families, and it accelerates the carry 

propagation by more than one order of magnitude 

compared to its implementation using general resources. 

Apart from the CPA implementation, many studies have 

demonstrated the importance of using this resource to 

achieve designs with better performance and/or less area 

requirements, and even for implementing non arithmetic 

circuits. Multioperand addition appears in many algorithms, 

such as multiplication, filters, SAD, and others. To achieve 

efficient implementations of this operation, redundant 

adders are extensively used. Redundant representation 

reduces the addition time by limiting the length of the 

carry-propagation chains.  

   The most usual representations are carry-save (CS) and 

signed-digit (SD). A CS adder (CSA) adds three numbers 

using an array of Full-Adders (FAs), but without 

propagating the carries. In this case, the FA is usually 

known as a 3:2 counter. The result is a CS number, which is 

composed of a sum-word and a carry-word. Therefore, the 

CS result is obtained without any carry propagation in the 

time taken by only one FA. The addition of two CS 

numbers requires an array of 4:2 compressors, which can be 

implemented by two 3:2 counters. The conversion to non 

redundant representation is achieved by adding the sum and 

carry word in a conventional CPA. However, due to the 

efficient implementation of CPAs, the use of redundant 

adders has usually been rejected when targeting FPGA 

technology. A direct implementation of a 3:2 counter 

usually doubles the area requirements of its equivalent CPA 
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and improved speed is only noticeable for long bit widths. 

Nevertheless, several recent studies have demonstrated that 

redundant adders can be efficiently mapped on FPGA 

structures, reducing area overhead and improving speed, as 

described in Section 2. Despite the important advances 

represented by these previous studies, the solutions 

proposed require either (or sometimes both) the use of a 

sophisticated heuristic to generate each compressor tree or a 

low-level design. The latter impedes portability, because it 

is highly dependent on the inner structure. In addition, their 

area and speed could be improved, because the use of a 

specialized fast carry-chain is very limited. 

 
Fig.1. General Scheme of dedicated carry-chain 

resources included in modern FPGA devices. 

     In this paper, we study the efficient implementation of 

Multi-operand redundant compressor trees in modern 

FPGAs by using their fast carry resources. Our approaches 

strongly reduce delay and they generally present no area 

overhead compared to a CPA tree. Moreover, they could be 

defined at a high level based on an array of standard CPAs. 

As a consequence, they are compatible with any FPGA 

family or brand, and any improvement in the CPA system 

of future FPGA families would also benefit from them. 

Furthermore, due to its simple structure, it is easy to design 

a parametric HDL core, which allows synthesizing a 

compressor tree for any number of operands of any bit 

width. Compared to previous approaches, our design 

presents better performance, is easier to implement, and 

offers direct portability. The rest of the paper focuses on CS 

representation, because the extension to SD representation 

could be simply achieved by inverting certain input and 

output signals from and to the compressor tree, as was 

demonstrated. Since it is unnecessary to make any internal 

changes to the array structure, these small modifications do 

not significantly modify compressor tree performance.   

The remainder of this paper is organized as follows: 

SectionII Carry Save Adders on FPGA. In SectionIII, we 

present Efficient Mapping of Carry - Save Adder in FPGA. 

In SectionIV, we compare the results of implementation 

using different approaches. Finally, the conclusions are 

presented in SectionV. 

II. CARRY SAVE ADDERS ON FPGA 

   This paper focuses mainly on the inner architecture of 

FPGAs with specialized carry-logic like Virtex 2, 4and 

Spartan 2, 3 of Xilinx and 4-input Look up tables. In spite 

of new generation Field programmable gate arrays which 

are having new inner architecture, FPGAs with four-input 

LUTs are widely used for medium complex applications 

due to low cost and low power consumption. It describes 

architecture of a slice implementing a CPA. Each slice 

includes two four-input Look up tables, two flip-flops, the 

specialized carry-logic and the necessary logic and 

multiplexers. These elements are connected as shown in the 

figure to operate like a CPA: the lower slice generates a 

carry bit (ci+1) and a sum bit (si) from three input bits xi,  ci. 

By using the carry propagation logic the carry bit ci+1 is 

then passed to the upper slice, where it will be added with 

xi+1 and yi+1, generating the next sum and carry bits,si+1 

and ci+2. Thus, each slice allocates the full addition of two 

pairs of bits. If we use a carry-save adder, si and ci+1 

should be computed in parallel for all bits comprising the 

input operands, independently from input and output 

carries. But this is not possible between the lower and 

upper parts of the slice. This means that hardware design 

tools allocate two Look up tables one for sum computation 

and carry computation. When they are provided with a CSA 

HDL description, i. e., they assign a full slice to the whole 

computation of one pair of bits. 

     In carry save addition (CSA) implementation on FPGA, 

the carry-out bit and the sum bit are generated using two 

LUTs whereas a carry propagate addition (CPA) we need 

only one LUT. Thus, the hardware required for a Carry 

save adder is double than that for a CPA. Besides, the CSA 

implementation does not take advantage of the carry 

propagation logic. In an attempt to use the available carry-

logic while keeping an adder maximum delay bounded 

regardless of the word length, authors present a solution 

making use of a high radix carry-save representation. Due 

to this high radix representation, initially introduced to 

reduce the number of wires and registers required to store a 

value, the sum word from a carry-save number is 

represented in radix- r (i. e. log2r bits per digit) and the 

carry word requires one only bit per radix- r digit. This 

representation allows the use of standard CPAs to add each 

of the sum word radix- r digit, connecting the carry word to 

the Carry propagate adder carry-in inputs, hence obtaining 

the final carry word at the CPA carry-out outputs. When 

this adder is implemented in an FPGA, we use the whole 

slice resources, including the carry logic, while increasing 

the addition delay. However, due to the great optimization 

of FPGAs carry logic, this delay increase is not very 

significative if the radix r is not high.  

  The main drawback in high radix carry save representation 

is that, the numbers shifts are not an easy task. In this case, 

complete shifts are only available for radix- r digits, i. e., 

shifts are only allowed for multiple of r numbers. This 

restriction comes from the carry word processing, since it is 

only available at some specific positions within the addition 

operation. These limitations becomes an important obstacle 

when applying the high radix carry save representation to 

many shifts and add based algorithms, and even the work 

presented has to deal with this problem. For this reason, it 
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is interesting to look for some other ways of using the carry 

logic when implementing carry save adders. 

III. EFFICIENT MAPPING OF CARRY - SAVE 

ADDER IN FPGA 

   Two different solutions to obtain a more efficient 

implementation of carry-save adders on FPGAs than the 

one presented in this section. 

A. Using Half of a Slice for a 3:2 Counter 

    The first proposed solution makes use of only half of a 

slice for a 1-bit 3:2 carry-save adder implementation. 

However, the remaining half of slice cannot be fully used, 

since the carry bit produced by 3:2 counter computations is 

feeded into it, disabling a possible use for the rest of the 

carry propagation logic. In this solution it is not possible to 

implement two 1-bit 3:2 CSAs within a single FPGA slice. 

Nevertheless, the free semi-slice resources can still be used 

by some other type of logic computation which does not 

need to take advantage of the carry logic. Fig.2 depicts how 

this solution is mapped into a slice. 

 
Fig.2. Efficient slice mapping for a 1-bit 3:2 CSA 

implementation. 

   The main drawback in this case is that the upper semi-

slice (the one left free) often remains unused within their 

application. As a consequence, the area requirements for 

this approach are higher than the one obtained by the 

solution described by them. Some other example 

applications, such as constant multiplier and an additive 

range reduction are developed. Where we have successfully 

taken advantage of the upper semi-slice using it as a table 

look-up. From the results obtained, we can conclude that 

this solution is convenient for those applications where the 

upper semi-slice can be used. 

B. Implementing A 4:2 Compressor 

   To overcome the drawback we cannot always guarantee a 

successful use of the upper semi-slice, for example for the 

commonly used multi operand addition. For this reason, 

here we propose a new type of mapping where we fully use 

whole slice hardware resources. The new approach lies in a 

4:2 compressor implementation instead of a single 3:2 

counter. Fig.3 depicts a typical 4:2 compressor scheme 

based on 3:2 counters, and Fig.4 shows how this 4:2 

compressor can be efficiently mapped into an FPGA slice. 

In order to achieve this goal, we have to map some parts 

from the addition of different weighted bits within the same 

slice. Specifically, the piece of hardware highlighted in 

Fig.3 is implemented into single slice.  

 
Fig.3. 4:2 compressor implementation using 3:2 

counters. 

 
Fig.4. Mapping of 4:2 compressors into a slice. 

   The upper semi-slice implements a second level 3:2 CSA, 

whereas the bottom semi-slice is in charge of implementing 

a first level 3:2 CSA In order to take advantage of the carry 

propagation logic, a single slice implements the first level 

addition for bits with weight 2^i and the second level 

addition for bits with weight 2^i+1. In this way, all the slice 

resources are used. 
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IV. RESULTS PROPOSED METHOD 

 Results of this paper is shown in bellow Figs. 5 to 12. 

 
Fig.5.Proposed adder design based on compressor 

Simulation. 

 
Fig.6. Compressor simulation based on the linear model 

approach Waveform. 

 
Fig.7. The outputs based on the inputs as sum is out1 

and out2. 

 
Fig.8. Compressor based adder. 

 
Fig.9.Simulation. 

 
Fig.10. Waveform. 
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Fig.11. Proposed power result. 

 
Fig.12. Cyclic adder result. 

V. CONCLUSION AND FUTURE SCOPE 

A. Conclusion 

 It was shown in this work that better compressing elements 

can be found by evaluating the low level structure of the 

FPGA. Novel compressing elements for modern Xilinx 

devices were proposed including different GPCs and a 4:2 

compressor based on a ternary adder. Better efficiency, a 

lower delay or both compared to previous compressing 

elements. They can be pipelined without overhead using the 

otherwise unused flip-flops in the device. A design example 

of a pipelined compressor tree showed the effectiveness of 

the 4:2 compressors. 

B. Future Scope 

   Further work has to be done in the automatic synthesis of 

pipelined compressor trees. Previous work only focused on 

non-pipelined compressor trees although this quite limits 

the speed of the design. However, the strategy for 

pipelining is different as each input bit has to be covered by 

at least a single flip-flop for each compression stage to get a 

balanced pipeline. Another issue is the selection of the best 

compressing element. 
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