

www.ijsetr.com

ISSN 2319-8885

Vol.03,Issue.47

December-2014,

Pages:9462-9466

 Copyright @ 2014 IJSETR. All rights reserved.

Multioperand Redundant Adders on FPGAs
MUDASIR MD

1
, TULASI SANATH KUMAR

2

1
PG Scholar, Dept of ECE, ASCET, Gudur, AP, India, Email: mudasir.md786@gmail.com.

2
Assistant Professor, Dept of ECE, ASCET, Gudur, AP, India, Email: tulasisanath@gmail.com.

Abstract: Although redundant addition is widely used to design parallel multi-operand adders for ASIC implementations, the

use of redundant adders on Field Programmable Gate Arrays (FPGAs) has generally been avoided. The main reasons are the

efficient implementation of carry propagate adders (CPAs) on these devices (due to their specialized carry-chain resources) as

well as the area overhead of the redundant adders when they are implemented on FPGAs. This paper presents different

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They present a fast critical path,

independent of bit width, with practically no area overhead compared to CPA trees. Along with the classic carry-save

compressor tree, we present a novel linear array structure, which efficiently uses the fast carry-chain resources. This approach is

defined in a parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or vendor. A

detailed study is provided for a wide range of bit widths and large number of operands. Compared to binary and ternary CPA

trees, speedups of up to 2.29 and 2.14 are achieved for 16-bit width and up to 3.81 and 3.11 for 64-bit width.

Keywords: Computer Arithmetic, Reconfigurable Hardware, Multi-Operand Addition, Redundant Representation, Carry-Save

Adders.

I. INTRODUCTION

 The use of Field Programmable Gate Arrays (FPGAs) to

implement digital circuits has been growing in recent years.

In addition to their reconfiguration capabilities, modern

FPGAs allow high parallel computing. FPGAs achieve

speedups of two orders of magnitude over a general-

purpose processor for arithmetic intensive algorithms.

Thus, these kinds of devices are increasingly selected as the

target technology for many applications, especially in

digital signal processing hardware accelerators

cryptography and much more. Therefore, the efficient

implementation of generalized operators on FPGAs is of

great relevance. The typical structure of an FPGA device is

a matrix of configurable logic elements (LEs), each one

surrounded by interconnection resources. In general, each

configurable element is basically composed of one or

several n-input lookup tables (N- LUT) and flip-flops.

However, in modern FPGA architectures, the array of LEs

has been augmented by including specialized circuitry, such

as dedicated multipliers, block RAM, and so on.

 In the authors demonstrate that the intensive use of these

new elements reduces the performance GAP between

FPGA and ASIC implementations. One of these resources

is the carry-chain system, which is used to improve the

implementation of carry propagate adders (CPAs). It

mainly consists of additional specialized logic to deal with

the carry signals, and specific fast routing lines between

consecutive LEs, as shown in Fig.1. This resource is

presented in most current FPGA devices from low-cost

ones to high-end families, and it accelerates the carry

propagation by more than one order of magnitude

compared to its implementation using general resources.

Apart from the CPA implementation, many studies have

demonstrated the importance of using this resource to

achieve designs with better performance and/or less area

requirements, and even for implementing non arithmetic

circuits. Multioperand addition appears in many algorithms,

such as multiplication, filters, SAD, and others. To achieve

efficient implementations of this operation, redundant

adders are extensively used. Redundant representation

reduces the addition time by limiting the length of the

carry-propagation chains.

 The most usual representations are carry-save (CS) and

signed-digit (SD). A CS adder (CSA) adds three numbers

using an array of Full-Adders (FAs), but without

propagating the carries. In this case, the FA is usually

known as a 3:2 counter. The result is a CS number, which is

composed of a sum-word and a carry-word. Therefore, the

CS result is obtained without any carry propagation in the

time taken by only one FA. The addition of two CS

numbers requires an array of 4:2 compressors, which can be

implemented by two 3:2 counters. The conversion to non

redundant representation is achieved by adding the sum and

carry word in a conventional CPA. However, due to the

efficient implementation of CPAs, the use of redundant

adders has usually been rejected when targeting FPGA

technology. A direct implementation of a 3:2 counter

usually doubles the area requirements of its equivalent CPA

MUDASIR MD, TULASI SANATH KUMAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.47, December-2014, Pages: 9462-9466

and improved speed is only noticeable for long bit widths.

Nevertheless, several recent studies have demonstrated that

redundant adders can be efficiently mapped on FPGA

structures, reducing area overhead and improving speed, as

described in Section 2. Despite the important advances

represented by these previous studies, the solutions

proposed require either (or sometimes both) the use of a

sophisticated heuristic to generate each compressor tree or a

low-level design. The latter impedes portability, because it

is highly dependent on the inner structure. In addition, their

area and speed could be improved, because the use of a

specialized fast carry-chain is very limited.

Fig.1. General Scheme of dedicated carry-chain

resources included in modern FPGA devices.

 In this paper, we study the efficient implementation of

Multi-operand redundant compressor trees in modern

FPGAs by using their fast carry resources. Our approaches

strongly reduce delay and they generally present no area

overhead compared to a CPA tree. Moreover, they could be

defined at a high level based on an array of standard CPAs.

As a consequence, they are compatible with any FPGA

family or brand, and any improvement in the CPA system

of future FPGA families would also benefit from them.

Furthermore, due to its simple structure, it is easy to design

a parametric HDL core, which allows synthesizing a

compressor tree for any number of operands of any bit

width. Compared to previous approaches, our design

presents better performance, is easier to implement, and

offers direct portability. The rest of the paper focuses on CS

representation, because the extension to SD representation

could be simply achieved by inverting certain input and

output signals from and to the compressor tree, as was

demonstrated. Since it is unnecessary to make any internal

changes to the array structure, these small modifications do

not significantly modify compressor tree performance.

The remainder of this paper is organized as follows:

SectionII Carry Save Adders on FPGA. In SectionIII, we

present Efficient Mapping of Carry - Save Adder in FPGA.

In SectionIV, we compare the results of implementation

using different approaches. Finally, the conclusions are

presented in SectionV.

II. CARRY SAVE ADDERS ON FPGA

 This paper focuses mainly on the inner architecture of

FPGAs with specialized carry-logic like Virtex 2, 4and

Spartan 2, 3 of Xilinx and 4-input Look up tables. In spite

of new generation Field programmable gate arrays which

are having new inner architecture, FPGAs with four-input

LUTs are widely used for medium complex applications

due to low cost and low power consumption. It describes

architecture of a slice implementing a CPA. Each slice

includes two four-input Look up tables, two flip-flops, the

specialized carry-logic and the necessary logic and

multiplexers. These elements are connected as shown in the

figure to operate like a CPA: the lower slice generates a

carry bit (ci+1) and a sum bit (si) from three input bits xi, ci.

By using the carry propagation logic the carry bit ci+1 is

then passed to the upper slice, where it will be added with

xi+1 and yi+1, generating the next sum and carry bits,si+1

and ci+2. Thus, each slice allocates the full addition of two

pairs of bits. If we use a carry-save adder, si and ci+1

should be computed in parallel for all bits comprising the

input operands, independently from input and output

carries. But this is not possible between the lower and

upper parts of the slice. This means that hardware design

tools allocate two Look up tables one for sum computation

and carry computation. When they are provided with a CSA

HDL description, i. e., they assign a full slice to the whole

computation of one pair of bits.

 In carry save addition (CSA) implementation on FPGA,

the carry-out bit and the sum bit are generated using two

LUTs whereas a carry propagate addition (CPA) we need

only one LUT. Thus, the hardware required for a Carry

save adder is double than that for a CPA. Besides, the CSA

implementation does not take advantage of the carry

propagation logic. In an attempt to use the available carry-

logic while keeping an adder maximum delay bounded

regardless of the word length, authors present a solution

making use of a high radix carry-save representation. Due

to this high radix representation, initially introduced to

reduce the number of wires and registers required to store a

value, the sum word from a carry-save number is

represented in radix- r (i. e. log2r bits per digit) and the

carry word requires one only bit per radix- r digit. This

representation allows the use of standard CPAs to add each

of the sum word radix- r digit, connecting the carry word to

the Carry propagate adder carry-in inputs, hence obtaining

the final carry word at the CPA carry-out outputs. When

this adder is implemented in an FPGA, we use the whole

slice resources, including the carry logic, while increasing

the addition delay. However, due to the great optimization

of FPGAs carry logic, this delay increase is not very

significative if the radix r is not high.

 The main drawback in high radix carry save representation

is that, the numbers shifts are not an easy task. In this case,

complete shifts are only available for radix- r digits, i. e.,

shifts are only allowed for multiple of r numbers. This

restriction comes from the carry word processing, since it is

only available at some specific positions within the addition

operation. These limitations becomes an important obstacle

when applying the high radix carry save representation to

many shifts and add based algorithms, and even the work

presented has to deal with this problem. For this reason, it

Multioperand Redundant Adders on FPGAs

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.47, December-2014, Pages: 9462-9466

is interesting to look for some other ways of using the carry

logic when implementing carry save adders.

III. EFFICIENT MAPPING OF CARRY - SAVE

ADDER IN FPGA

 Two different solutions to obtain a more efficient

implementation of carry-save adders on FPGAs than the

one presented in this section.

A. Using Half of a Slice for a 3:2 Counter

 The first proposed solution makes use of only half of a

slice for a 1-bit 3:2 carry-save adder implementation.

However, the remaining half of slice cannot be fully used,

since the carry bit produced by 3:2 counter computations is

feeded into it, disabling a possible use for the rest of the

carry propagation logic. In this solution it is not possible to

implement two 1-bit 3:2 CSAs within a single FPGA slice.

Nevertheless, the free semi-slice resources can still be used

by some other type of logic computation which does not

need to take advantage of the carry logic. Fig.2 depicts how

this solution is mapped into a slice.

Fig.2. Efficient slice mapping for a 1-bit 3:2 CSA

implementation.

 The main drawback in this case is that the upper semi-

slice (the one left free) often remains unused within their

application. As a consequence, the area requirements for

this approach are higher than the one obtained by the

solution described by them. Some other example

applications, such as constant multiplier and an additive

range reduction are developed. Where we have successfully

taken advantage of the upper semi-slice using it as a table

look-up. From the results obtained, we can conclude that

this solution is convenient for those applications where the

upper semi-slice can be used.

B. Implementing A 4:2 Compressor

 To overcome the drawback we cannot always guarantee a

successful use of the upper semi-slice, for example for the

commonly used multi operand addition. For this reason,

here we propose a new type of mapping where we fully use

whole slice hardware resources. The new approach lies in a

4:2 compressor implementation instead of a single 3:2

counter. Fig.3 depicts a typical 4:2 compressor scheme

based on 3:2 counters, and Fig.4 shows how this 4:2

compressor can be efficiently mapped into an FPGA slice.

In order to achieve this goal, we have to map some parts

from the addition of different weighted bits within the same

slice. Specifically, the piece of hardware highlighted in

Fig.3 is implemented into single slice.

Fig.3. 4:2 compressor implementation using 3:2

counters.

Fig.4. Mapping of 4:2 compressors into a slice.

 The upper semi-slice implements a second level 3:2 CSA,

whereas the bottom semi-slice is in charge of implementing

a first level 3:2 CSA In order to take advantage of the carry

propagation logic, a single slice implements the first level

addition for bits with weight 2^i and the second level

addition for bits with weight 2^i+1. In this way, all the slice

resources are used.

MUDASIR MD, TULASI SANATH KUMAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.47, December-2014, Pages: 9462-9466

IV. RESULTS PROPOSED METHOD

 Results of this paper is shown in bellow Figs. 5 to 12.

Fig.5.Proposed adder design based on compressor

Simulation.

Fig.6. Compressor simulation based on the linear model

approach Waveform.

Fig.7. The outputs based on the inputs as sum is out1

and out2.

Fig.8. Compressor based adder.

Fig.9.Simulation.

Fig.10. Waveform.

Multioperand Redundant Adders on FPGAs

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.47, December-2014, Pages: 9462-9466

Fig.11. Proposed power result.

Fig.12. Cyclic adder result.

V. CONCLUSION AND FUTURE SCOPE

A. Conclusion

 It was shown in this work that better compressing elements

can be found by evaluating the low level structure of the

FPGA. Novel compressing elements for modern Xilinx

devices were proposed including different GPCs and a 4:2

compressor based on a ternary adder. Better efficiency, a

lower delay or both compared to previous compressing

elements. They can be pipelined without overhead using the

otherwise unused flip-flops in the device. A design example

of a pipelined compressor tree showed the effectiveness of

the 4:2 compressors.

B. Future Scope

 Further work has to be done in the automatic synthesis of

pipelined compressor trees. Previous work only focused on

non-pipelined compressor trees although this quite limits

the speed of the design. However, the strategy for

pipelining is different as each input bit has to be covered by

at least a single flip-flop for each compression stage to get a

balanced pipeline. Another issue is the selection of the best

compressing element.

VI. REFERENCES

[1] Javier Hormigo, Julio Villalba, Member, IEEE, and

Emilio L. Zapata, “Multioperand Redundant Adders on

FPGAS”, IEEE Transactions on Computers, Vol. 62, No.

10, October 2013.

[2] B. Cope, P. Cheung, W. Luk, and L. Howes,

“Performance Comparison of Graphics Processors to

Reconfigurable Logic: A Case Study,” IEEE Trans.

Computers, vol. 59, no. 4, pp. 433-448, Apr. 2010.

[3] S. Dikmese, A. Kavak, K. Kucuk, S. Sahin, A. Tangel,

and H. Dincer, “Digital Signal Processor against Field

Programmable Gate Array Implementations of Space-Code

Correlator Beam former for Smart Antennas,” IET

Microwaves, Antennas Propagation, vol. 4, no. 5, pp. 593-

599, May 2010.

[4] S. Roy and P. Banerjee, “An Algorithm for Trading off

Quantization Error with Hardware Resources for

MATLAB-based FPGA Design,” IEEE Trans. Computers,

vol. 54, no. 7, pp. 886-896, July 2005.

[5] F. Schneider, A. Agarwal, Y.M. Yoo, T. Fukuoka, and

Y. Kim, “A Fully Programmable Computing Architecture

for Medical Ultrasound Machines,” IEEE Trans.

Information Technology in Biomedicine, vol. 14, no. 2, pp.

538-540, Mar. 2010.

[6] J. Hill, “The Soft-Core Discrete-Time Signal Processor

Peripheral [Applications Corner],” IEEE Signal Processing

Magazine, vol. 26, no. 2, pp. 112-115, Mar. 2009.

[7] J.S. Kim, L. Deng, P. Mangalagiri, K. Irick, K. Sobti,

M. Kandemir, V. Narayanan, C. Chakrabarti, N. Pitsianis,

and X. Sun, “An Automated Framework for Accelerating

Numerical Algorithms on Reconfigurable Platforms Using

Algorithmic/Architectural Optimization,” IEEE Trans.

Computers, vol. 58, no. 12, pp. 1654-1667, Dec. 2009.

[8] H. Lange and A. Koch, “Architectures and Execution

Models for Hardware/Software Compilation and their

System-Level Realization,” IEEE Trans. Computers, vol.

59, no. 10, pp. 1363-1377, Oct. 2010.

[9] L. Zhuo and V. Prasanna, “High-Performance Designs

for Linear Algebra Operations on Reconfigurable

Hardware,” IEEE Trans. Computers, vol. 57, no. 8, pp.

1057-1071, Aug. 2008.

[10] C. Mancillas-Lopez, D. Chakraborty, and F.R.

Henriquez, “Reconfigurable Hardware Implementations of

Tweak able Enciphering Schemes,” IEEE Trans.

Computers,, vol. 59, no. 11, pp. 1547-1561, Nov. 2010.

[11] T. Guneysu, T. Kasper, M. Novotny, C. Paar, and A.

Rupp, “Cryptanalysis with COPACOBANA,” IEEE Trans.

Computers, vol. 57, no. 11, pp. 1498-1513, Nov. 2008.

[12] I. Kuon and J. Rose, “Measuring the Gap between

FPGAs and ASICs,” IEEE Trans. Computer-Aided Design

of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-

215, Feb. 2007.

