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Abstract: Parallel-prefix adders (also known as carry- tree adders) are known to have the best performance in VLSI 

designs.  However, this performance advantage does not translate directly into FPGA implementations due to 

constraints on logic block configurations and routing overhead. This paper investigates two types of carry-tree 

adders (the Kogge-Stone, sparse Kogge-Stone) and compares them to the simple  Ripple  Carry  Adder  (RCA) . 

These designs of varied bit-widths were implemented on a Xilinx Spartan 3E FPGA and delay measurements were 

made with a high-performance logic analyzer. Due to the presence of a fast carry-chain, the RCA & KSA designs 

exhibit better delay performance starting with 4bits to 256 bits.   
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I. INTRODUCTION 

The binary adder is the critical element in most digital 

circuit designs including digital signal processors (DSP) 

and microprocessor datapath units As such, extensive 

research continues to be focused on improving the 

power- delay performance of the adder. In VLSI 

implementations, parallel-prefix adders are known to 

have the best performance. Reconfigurable  logic such 

as Field Programmable Gate Arrays (FPGAs) has been 

gaining in popularity in recent years because it offers 

improved performance in terms of speed and power 

over DSP-based and microprocessor-based solutions for 

many practical designs involving mobile DSP and 

telecommunications applications and a significant 

reduction in development time and cost over 

Application Specific Integrated Circuit (ASIC) designs. 

The power advantage is especially important with the 

growing popularity of mobile and portable electronics, 

which make extensive use of DSP functions. However, 

because  of  the  structure  of  the  configurable  logic  

and routing resources in FPGAs, parallel-prefix adders 

will have a different performance than VLSI 

implementations. In particular, most modern FPGAs 

employ a fast-carry chain which optimizes the carry 

path for the simple Ripple Carry Adder (RCA). 

             In this paper, the practical issues involved in 

designing and implementing tree-based adders on 

FPGAs are described. An efficient testing strategy for 

evaluating the performance of these adders is discussed. 

Several tree-based adder structures are implemented and 

characterized on a FPGA and compared with the Ripple  

 

Carry Adder (RCA) and the Carry Skip Adder (CSA). 

Finally, some conclusions and suggestions for 

improving FPGA designs to enable better tree-based 

adder performance are given. 

 

II. CARRY-TREE ADDER DESIGNS 

 

        Parallel-prefix adders, also known as carry-tree 

adders, pre-compute the propagate and generate signals 

[1]. These signals are variously combined using the 

fundamental carry operator (fco) [2]. 

 

     (1) 

 

      Due to associative property of the fco, these 

operators can be combined in different ways to form 

various adder structures. For, example the four-bit 

carry-lookahead generator is given by: 

 

    (2) 

 

        A simple rearrangement of the order of operations 

allows parallel operation, resulting in a more efficient 

tree structure for this four bit example: 

 

 (3) 

             It is readily apparent that a key advantage of the 

tree structured adder is that the critical path due to the 

carry delay is on the order of log2N for an N-bit wide 
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adder. The arrangement of the prefix network gives rise  

to various families of adders. For a discussion of the 

various carry-tree structures, see [1, 3]. For this study, 

the focus is on the Kogge-Stone adder [4], known for 

having minimal logic depth and fanout (see Fig 1(a)). 

Here we designate BC as the black cell which generates 

the ordered pair in equation (1); the gray cell (GC) 

generates the left signal only, following [1]. The 

interconnect area is known to be high, but for an FPGA 

with large routing overhead to begin with, this is not as 

important as in a VLSI implementation. The regularity 

of the Kogge-Stone prefix network has built in 

redundancy which has implications for fault-tolerant 

designs [5]. The sparse Kogge-Stone adder, shown in 

Fig 1(b), is also studied. This hybrid design completes 

the summation process with a 4 bit RCA allowing the 

carry prefix network to be simplified. 

 

 

 
 

Fig. 1. (a) 16 bit Kogge-Stone adder and (b) sparse 16- 

bit Kogge-Stone adder.  

 

        Another carry-tree adder known as the spanning 

tree carry-lookahead (CLA) adder is also examined [6]. 

Like the sparse Kogge-Stone adder, this design 

terminates with a 4-bit RCA. As the FPGA uses a fast 

carry-chain for the RCA, it is interesting to compare the 

performance of this adder with the sparse Kogge-Stone 

and regular Kogge-Stone adders. Also of interest for the 

spanning-tree CLA is its testability features [7]. 

 
 

Fig. 2. Spanning Tree Carry Lookahead Adder (16 bit) 

 

 

III. RELATED WORK 

 

          Xing and Yu noted that delay models and cost 

analysis for adder designs developed for VLSI 

technology do not map directly to FPGA designs [8]. 

They compared the design of the ripple carry adder with 

the carry-lookahead, carry-skip, and carry-select adders 

on the Xilinx 4000 series FPGAs. Only an optimized 

form of the carry-skip adder performed better than the 

ripple carry adder when the adder operands were above 

56 bits. A study of adders implemented on the Xilinx 

Virtex II yielded similar results [9]. In [10], the authors 

considered several parallel prefix adders implemented 

on a Xilinx Virtex 5 FPGA. It is found that the simple 

RCA adder is superior to the parallel prefix designs 

because the RCA can take advantage of the fast carry 

chain on the FPGA. 

 

      This study focuses on carry-tree adders implemented 

on a Xilinx Spartan 3E FPGA. The distinctive 

contributions of this paper are two-fold. First, we 

consider tree-based adders and a hybrid form which 

combines a tree structure with a ripple-carry design. The 

Kogge-Stone adder is chosen as a representative of the 

former type and the sparse Kogge-Stone and spanning 

tree adder are representative of the latter category. 

Second, this paper considers the practical issues 

involved in testing the adders and provides actual 

measurement data to compare with simulation results.  

 

           The previous works cited above all rely upon the 

synthesis reports from the FPGA place and route 

software for their results. In addition to being able to 

compare the simulation data with measured data using a 

high-speed logic analyzer, our results present a different 

perspective in terms of both results and types of adders 

as those presented in [8-10].  
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IV. METHOD OF STUDY 

 

      The adders to be studied were designed with varied 

bit widths up to 128 bits and coded in VHDL. The 

functionality of the designs were verified via simulation 

with ModelSim. The Xilinx ISE 12.2 software was used 

to synthesize the designs onto the Spartan 3E FPGA. In 

order to effectively test for the critical delay, two steps 

were taken. First, a memory block (labeled as ROM in 

the figure below) was instantiated on the FPGA using 

the CoreGenerator to allow arbitrary patterns of inputs 

to be applied to the adder design.  

 

           A multiplexer at each adder output selects 

whether or not to include the adder in the measured 

results, as shown in Fig. 3. A switch on the FPGA board 

was wired to the select pin of the multiplexers. This 

allows measurements to be made to subtract out the 

delay due to the memory, the multiplexers, and 

interconnect (both external cabling and internal 

routing).  

 

 
 

Fig. 3. Circuit used to test the adders 

 

   Second, the parallel prefix network was analyzed to 

determine if a specific pattern could be used to extract 

the worst case delay. Considering the structure of the 

Generate-Propagate (GP) blocks (i.e., the BC and GC 

cells), we were able to develop the following scheme, 

by considering the following subset of input values to 

the GP blocks. 

 

Table I: Subset of (g, p) Relations Used for Testing 

 

 

If we arbitrarily assign the (g, p) ordered pairs the 

values (1,0) = True and (0, 1) = False, then the table is 

self-contained and forms an OR truth table. 

Furthermore, if both inputs to the GP block are False, 

then the output is False; conversely, if both inputs are 

True, then the output is True. Hence, an input pattern 

that alternates between generating the (g, p) pairs of (1, 

0) and (0, 1) will force its GP pair block to alternate 

states. Likewise, it is easily seen that the GP blocks 

being fed by its predecessors will also alternate states. 

 

     Therefore, this scheme will ensure that a worse case 

delay will be generated in the parallel prefix network 

since every block will be active. In order to ensure this 

scheme works, the parallel prefix adders were 

synthesized with the “Keep Hierarchy” design setting 

turned on (otherwise, the FPGA compiler attempts to 

reorganize the logic assigned to each LUT). With this 

option turned on, it ensures that each GP block is 

mapped to one LUT, preserving the basic parallel prefix 

structure, and ensuring that this test strategy is effective 

for determining the critical delay. The designs were also 

synthesized for speed rather than area optimization. 

 

        The adders were tested with a Tektronix TLA7012 

Logic Analyzer. The logic analyzer is equipped with the 

7BB4 module that provides a timing resolution of 20 ps 

under the MagniVu setting. This allows direct 

measurement of the adder delays. The Spartan 3E 

development board is equipped with a soft touch-

landing pad which allows low capacitance connection 

directly to the logic analyzer. The test setup is depicted 

in the figure below. 

 

 
 

Fig. 4. Test setup showing the Logic Analyzer and 

Spartan 3E development board. 
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Fig. 5. Screen shot of a delay measurement for a 64 bit 

adder using MagniVu timing (blue traces) on the TLA 

7012. 

 

V. DISCUSSION OF RESULTS 

 

          The simulated adder delays obtained from the 

Xilinx ISE synthesis reports are shown in Fig. 6. The 

simulation results for the carry skip adders are not 

included because the ISE software is not able to 

correctly identify the critical path through the adder and 

hence does not report accurate estimates of the adder 

delay. Observe that a semi-log plot is employed, so as 

expected the tree-adder delay plots as a straight line on 

this graph. Somewhat surprising is the fact that the 

sparse Kogge-Stone adder has about the same delay as 

the regular Kogge-Stone adder. Because the sparse 

Kogge Stone completes the summation process with a 4 

bit RCA, which are optimized via the fast carry chain, 

its performance is expected to be intermediate between 

the regular Kogge-Stone adder and the RCA. The 

impact of the routing overhead would seem to be a 

likely cause. However, according to the synthesis 

reports, the delay with the logic only makes the regular 

Kogge-Stone slightly faster. This will need to be a topic 

of further investigation. 

 

 
Fig. 6. Simulation results for the adder designs 

Overall, when the delay due to routing overhead is 

removed, the tree adders are now closer to the simple 

RCA design. The RCA adder exhibits the best delay 

with widths up to 64 bits when the routing delay is 

excluded and out to 128 bits with the routing delay 

included. Figures 7 and 8 depict the measured results 

using the TLA. A comparison between the tree adders 

and the RCA is given in Figure 7. The basic trends are 

the same: the tree adders exhibit logarithmic delay 

dependence on bit widths and the RCA has linear 

performance. An RCA as large as 160 bits wide was 

synthesizable on the FPGA, while a Kogge-Stone adder 

up to 128 bits wide was implemented. The carry-skip 

adders are compared with the Kogge-Stone adders and 

the RCA in Figure 8. Carry skip adders with a skip of 

four and eight were implemented. The poor 

performance of the carry skip adders is attributable to 

the significant routing overhead incurred by this 

structure. 

 

 
 

Fig. 7. Measured results for the parallel-prefix adder 

designs compared with the RCA 

 

 
Fig. 8. Measured results for the carry-skip adders 

compared to the RCA and Kogge-Stone adders 
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           The actual measured data appears to be a bit 

smaller than what is predicted by the Xilinx ISE 

synthesis reports. An analysis of these reports, which 

give a breakdown of delay due to logic and routing, 

would seem to indicate that at adder widths approaching 

256 bits and beyond, the Kogge-Stone adder will have 

superior performance compared to the RCA. Based on 

the synthesis reports, the delay of the Kogge-Stone 

adder can be predicted by the following equation: 

 

                                (4) 

 

where , the adder bit width, ΔLUT is the delay 

through a lookup table (LUT), and  is the routing 

delay of the Kogge-Stone adder as a function of n. The 

delay of the RCA can be predicted as: 

 

                      (5) 

where  is the mux delay associated with the fast-

carry chain and  is a fixed logic delay. There is no 

routing delay assumed for the RCA due to the use of the 

fast-carry chain. For the Spartan 3E FPGA, the 

synthesis reports give the following values: ΔLUT = 

0.612 ns, ΔMUX = 0.051 ns, and τRCA = 1.715 ns. 

Even though ΔMUX << ΔLUT, it is expected that the 

Kogge-Stone adder will eventually be faster than the 

RCA because N = 2n, provided that ρKS(n) grows 

relatively slower than . Indeed, Table II 

predicts that the Kogge-Stone adder will have superior 

performance at N =256. 

 

Table II: Delay Results for the Kogge-Stone Adders 

 
 

(all delays given in ns) 

 

      The second and third columns represent the total 

predicted delay and the delay due to routing only for the 

Kogge-Stone adder from the synthesis reports of the 

Xilinx ISE software. The fitted routing delay in column 

four represents the predicted routing delay using a 

quadratic polynomial in n based on the N = 4 to 128 

data. This allows the N = 256 routing delay to be 

predicted with some degree of confidence as an actual 

Kogge-Stone adder at this bit width was not 

synthesized. The final two columns give the predicted 

adder delays for the Kogge-Stone and RCA using 

equations (4) and (5), respectively. The good match 

between the measured and simulated data for the 

implemented Kogge-Stone adders and RCAs gives 

confidence that the predicted superiority of the Kogge-

Stone adder at the 256 bit width is accurate. 

 

         This differs from the results in [10], where the 

parallelprefix adders, including the Kogge-Stone adder, 

always exhibited inferior performance compared with 

the RCA (simulation results out to 256 bits were 

reported). The work in [10] did use a different FPGA 

(Xilinx Virtex 5), which may account for some of the 

differences. The poor performance of some of the other 

implemented adders also deserves some comment. The 

spanning tree adder is comparable in performance to the 

Kogge-Stone adder at 16 bits. However, the spanning 

tree adder is significantly slower at higher bit widths, 

according to the simulation results, and slightly slower, 

according to the measured data. The structure of the 

spanning tree adder results in an extra stage of logic for 

some adder outputs compared to the Kogge-Stone. This 

fact coupled with the way the FPGA place and route 

software arranges the adder is likely the reason for this 

significant increase in delay for higher order bit widths. 

Similarly, the inferior performance of the carry-skip 

adders is due to the LUT delay and routing overhead 

associated with each carry-skip logic structure. Even if 

the carry-skip logic could be implemented with the fast-

carry chain, this would just make it equivalent in speed 

to the RCA. Hence, the RCA delay represents the 

theoretical lower limit for a carry-skip architecture on 

an FPGA. 

 

VI. SUMMARY AND FUTURE WORK 

 

      Both measured and simulation results from this 

study have shown that parallel-prefix adders are not as 

effective as the simple ripple-carry adder at low to 

moderate bit widths. This is not unexpected as the 

Xilinx FPGA has a fast carry chain which optimizes the 

performance of the ripple carry adder. However, 

contrary to other studies, we have indications that the 

carry-tree adders eventually surpass the performance of 

the linear adder designs at high bit-widths, expected to 

be in the 128 to 256 bit range. This is important for 

large adders used in precision arithmetic and 

cryptographic applications where the addition of 

numbers on the order of a thousand bits is not 

uncommon. Because the adder is often the critical 
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element which determines to a large part the cycle time 

and power dissipation for many digital signal processing 

and cryptographical implementations, it would be 

worthwhile for future FPGA designs to include an 

optimized carry path to enable treebased adder designs 

to be optimized for place and routing. This would 

improve their performance similar to what is found for 

the RCA. We plan to explore possible FPGA 

architectures that could implement a “fast-tree chain” 

and investigate the possible trade-offs involved. The 

built-in redundancy of the Kogge-Stone carry-tree 

structure and its implications for fault tolerance in 

FPGA designs is being studied. The testability and 

possible fault tolerant features of the spanning tree 

adder are also topics for future research.  
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