

www.semargroups.org

ISSN 2319-8885,Volume01,Issue No. 03

 Jul-Dec 2012, P.P. 192-197

Copyright @ 2012 SEMAR GROUPS. All rights reserved.

Design and Characterization of Parallel Prefix Adders using FPGA

G.SAVITHA
1
, MD.SHAHBAZ KHAN

2

1
M.Tech Student of CMRIT, Ranga Reddy(Dt), AP-India,e-mail: savithareddy_in@yahoo.co.in,

2
Asst Professor, ECE Dept, CMRIT, Ranga Reddy(Dt), AP-India,

Abstract: Parallel-prefix adders (also known as carry- tree adders) are known to have the best performance in VLSI

designs. However, this performance advantage does not translate directly into FPGA implementations due to

constraints on logic block configurations and routing overhead. This paper investigates two types of carry-tree

adders (the Kogge-Stone, sparse Kogge-Stone) and compares them to the simple Ripple Carry Adder (RCA) .

These designs of varied bit-widths were implemented on a Xilinx Spartan 3E FPGA and delay measurements were

made with a high-performance logic analyzer. Due to the presence of a fast carry-chain, the RCA & KSA designs

exhibit better delay performance starting with 4bits to 256 bits.

Keyword: RCA,KSA.3E FPGA,Tree Adders.

I. INTRODUCTION

The binary adder is the critical element in most digital

circuit designs including digital signal processors (DSP)

and microprocessor datapath units As such, extensive

research continues to be focused on improving the

power- delay performance of the adder. In VLSI

implementations, parallel-prefix adders are known to

have the best performance. Reconfigurable logic such

as Field Programmable Gate Arrays (FPGAs) has been

gaining in popularity in recent years because it offers

improved performance in terms of speed and power

over DSP-based and microprocessor-based solutions for

many practical designs involving mobile DSP and

telecommunications applications and a significant

reduction in development time and cost over

Application Specific Integrated Circuit (ASIC) designs.

The power advantage is especially important with the

growing popularity of mobile and portable electronics,

which make extensive use of DSP functions. However,

because of the structure of the configurable logic

and routing resources in FPGAs, parallel-prefix adders

will have a different performance than VLSI

implementations. In particular, most modern FPGAs

employ a fast-carry chain which optimizes the carry

path for the simple Ripple Carry Adder (RCA).

 In this paper, the practical issues involved in

designing and implementing tree-based adders on

FPGAs are described. An efficient testing strategy for

evaluating the performance of these adders is discussed.

Several tree-based adder structures are implemented and

characterized on a FPGA and compared with the Ripple

Carry Adder (RCA) and the Carry Skip Adder (CSA).

Finally, some conclusions and suggestions for

improving FPGA designs to enable better tree-based

adder performance are given.

II. CARRY-TREE ADDER DESIGNS

 Parallel-prefix adders, also known as carry-tree

adders, pre-compute the propagate and generate signals

[1]. These signals are variously combined using the

fundamental carry operator (fco) [2].

 (1)

 Due to associative property of the fco, these

operators can be combined in different ways to form

various adder structures. For, example the four-bit

carry-lookahead generator is given by:

 (2)

 A simple rearrangement of the order of operations

allows parallel operation, resulting in a more efficient

tree structure for this four bit example:

 (3)

 It is readily apparent that a key advantage of the

tree structured adder is that the critical path due to the

carry delay is on the order of log2N for an N-bit wide

G.SAVITHA, MD.SHAHBAZ KHAN

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 03, Jul-Dec 2012, pp. 192-197

adder. The arrangement of the prefix network gives rise

to various families of adders. For a discussion of the

various carry-tree structures, see [1, 3]. For this study,

the focus is on the Kogge-Stone adder [4], known for

having minimal logic depth and fanout (see Fig 1(a)).

Here we designate BC as the black cell which generates

the ordered pair in equation (1); the gray cell (GC)

generates the left signal only, following [1]. The

interconnect area is known to be high, but for an FPGA

with large routing overhead to begin with, this is not as

important as in a VLSI implementation. The regularity

of the Kogge-Stone prefix network has built in

redundancy which has implications for fault-tolerant

designs [5]. The sparse Kogge-Stone adder, shown in

Fig 1(b), is also studied. This hybrid design completes

the summation process with a 4 bit RCA allowing the

carry prefix network to be simplified.

Fig. 1. (a) 16 bit Kogge-Stone adder and (b) sparse 16-

bit Kogge-Stone adder.

 Another carry-tree adder known as the spanning

tree carry-lookahead (CLA) adder is also examined [6].

Like the sparse Kogge-Stone adder, this design

terminates with a 4-bit RCA. As the FPGA uses a fast

carry-chain for the RCA, it is interesting to compare the

performance of this adder with the sparse Kogge-Stone

and regular Kogge-Stone adders. Also of interest for the

spanning-tree CLA is its testability features [7].

Fig. 2. Spanning Tree Carry Lookahead Adder (16 bit)

III. RELATED WORK

 Xing and Yu noted that delay models and cost

analysis for adder designs developed for VLSI

technology do not map directly to FPGA designs [8].

They compared the design of the ripple carry adder with

the carry-lookahead, carry-skip, and carry-select adders

on the Xilinx 4000 series FPGAs. Only an optimized

form of the carry-skip adder performed better than the

ripple carry adder when the adder operands were above

56 bits. A study of adders implemented on the Xilinx

Virtex II yielded similar results [9]. In [10], the authors

considered several parallel prefix adders implemented

on a Xilinx Virtex 5 FPGA. It is found that the simple

RCA adder is superior to the parallel prefix designs

because the RCA can take advantage of the fast carry

chain on the FPGA.

 This study focuses on carry-tree adders implemented

on a Xilinx Spartan 3E FPGA. The distinctive

contributions of this paper are two-fold. First, we

consider tree-based adders and a hybrid form which

combines a tree structure with a ripple-carry design. The

Kogge-Stone adder is chosen as a representative of the

former type and the sparse Kogge-Stone and spanning

tree adder are representative of the latter category.

Second, this paper considers the practical issues

involved in testing the adders and provides actual

measurement data to compare with simulation results.

 The previous works cited above all rely upon the

synthesis reports from the FPGA place and route

software for their results. In addition to being able to

compare the simulation data with measured data using a

high-speed logic analyzer, our results present a different

perspective in terms of both results and types of adders

as those presented in [8-10].

Design and Characterization of Parallel Prefix Adders using FPGA

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 03, Jul-Dec 2012, pp. 192-197

IV. METHOD OF STUDY

 The adders to be studied were designed with varied

bit widths up to 128 bits and coded in VHDL. The

functionality of the designs were verified via simulation

with ModelSim. The Xilinx ISE 12.2 software was used

to synthesize the designs onto the Spartan 3E FPGA. In

order to effectively test for the critical delay, two steps

were taken. First, a memory block (labeled as ROM in

the figure below) was instantiated on the FPGA using

the CoreGenerator to allow arbitrary patterns of inputs

to be applied to the adder design.

 A multiplexer at each adder output selects

whether or not to include the adder in the measured

results, as shown in Fig. 3. A switch on the FPGA board

was wired to the select pin of the multiplexers. This

allows measurements to be made to subtract out the

delay due to the memory, the multiplexers, and

interconnect (both external cabling and internal

routing).

Fig. 3. Circuit used to test the adders

 Second, the parallel prefix network was analyzed to

determine if a specific pattern could be used to extract

the worst case delay. Considering the structure of the

Generate-Propagate (GP) blocks (i.e., the BC and GC

cells), we were able to develop the following scheme,

by considering the following subset of input values to

the GP blocks.

Table I: Subset of (g, p) Relations Used for Testing

If we arbitrarily assign the (g, p) ordered pairs the

values (1,0) = True and (0, 1) = False, then the table is

self-contained and forms an OR truth table.

Furthermore, if both inputs to the GP block are False,

then the output is False; conversely, if both inputs are

True, then the output is True. Hence, an input pattern

that alternates between generating the (g, p) pairs of (1,

0) and (0, 1) will force its GP pair block to alternate

states. Likewise, it is easily seen that the GP blocks

being fed by its predecessors will also alternate states.

 Therefore, this scheme will ensure that a worse case

delay will be generated in the parallel prefix network

since every block will be active. In order to ensure this

scheme works, the parallel prefix adders were

synthesized with the “Keep Hierarchy” design setting

turned on (otherwise, the FPGA compiler attempts to

reorganize the logic assigned to each LUT). With this

option turned on, it ensures that each GP block is

mapped to one LUT, preserving the basic parallel prefix

structure, and ensuring that this test strategy is effective

for determining the critical delay. The designs were also

synthesized for speed rather than area optimization.

 The adders were tested with a Tektronix TLA7012

Logic Analyzer. The logic analyzer is equipped with the

7BB4 module that provides a timing resolution of 20 ps

under the MagniVu setting. This allows direct

measurement of the adder delays. The Spartan 3E

development board is equipped with a soft touch-

landing pad which allows low capacitance connection

directly to the logic analyzer. The test setup is depicted

in the figure below.

Fig. 4. Test setup showing the Logic Analyzer and

Spartan 3E development board.

G.SAVITHA, MD.SHAHBAZ KHAN

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 03, Jul-Dec 2012, pp. 192-197

Fig. 5. Screen shot of a delay measurement for a 64 bit

adder using MagniVu timing (blue traces) on the TLA

7012.

V. DISCUSSION OF RESULTS

 The simulated adder delays obtained from the

Xilinx ISE synthesis reports are shown in Fig. 6. The

simulation results for the carry skip adders are not

included because the ISE software is not able to

correctly identify the critical path through the adder and

hence does not report accurate estimates of the adder

delay. Observe that a semi-log plot is employed, so as

expected the tree-adder delay plots as a straight line on

this graph. Somewhat surprising is the fact that the

sparse Kogge-Stone adder has about the same delay as

the regular Kogge-Stone adder. Because the sparse

Kogge Stone completes the summation process with a 4

bit RCA, which are optimized via the fast carry chain,

its performance is expected to be intermediate between

the regular Kogge-Stone adder and the RCA. The

impact of the routing overhead would seem to be a

likely cause. However, according to the synthesis

reports, the delay with the logic only makes the regular

Kogge-Stone slightly faster. This will need to be a topic

of further investigation.

Fig. 6. Simulation results for the adder designs

Overall, when the delay due to routing overhead is

removed, the tree adders are now closer to the simple

RCA design. The RCA adder exhibits the best delay

with widths up to 64 bits when the routing delay is

excluded and out to 128 bits with the routing delay

included. Figures 7 and 8 depict the measured results

using the TLA. A comparison between the tree adders

and the RCA is given in Figure 7. The basic trends are

the same: the tree adders exhibit logarithmic delay

dependence on bit widths and the RCA has linear

performance. An RCA as large as 160 bits wide was

synthesizable on the FPGA, while a Kogge-Stone adder

up to 128 bits wide was implemented. The carry-skip

adders are compared with the Kogge-Stone adders and

the RCA in Figure 8. Carry skip adders with a skip of

four and eight were implemented. The poor

performance of the carry skip adders is attributable to

the significant routing overhead incurred by this

structure.

Fig. 7. Measured results for the parallel-prefix adder

designs compared with the RCA

Fig. 8. Measured results for the carry-skip adders

compared to the RCA and Kogge-Stone adders

Design and Characterization of Parallel Prefix Adders using FPGA

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 03, Jul-Dec 2012, pp. 192-197

 The actual measured data appears to be a bit

smaller than what is predicted by the Xilinx ISE

synthesis reports. An analysis of these reports, which

give a breakdown of delay due to logic and routing,

would seem to indicate that at adder widths approaching

256 bits and beyond, the Kogge-Stone adder will have

superior performance compared to the RCA. Based on

the synthesis reports, the delay of the Kogge-Stone

adder can be predicted by the following equation:

 (4)

where , the adder bit width, ΔLUT is the delay

through a lookup table (LUT), and is the routing

delay of the Kogge-Stone adder as a function of n. The

delay of the RCA can be predicted as:

 (5)

where is the mux delay associated with the fast-

carry chain and is a fixed logic delay. There is no

routing delay assumed for the RCA due to the use of the

fast-carry chain. For the Spartan 3E FPGA, the

synthesis reports give the following values: ΔLUT =

0.612 ns, ΔMUX = 0.051 ns, and τRCA = 1.715 ns.

Even though ΔMUX << ΔLUT, it is expected that the

Kogge-Stone adder will eventually be faster than the

RCA because N = 2n, provided that ρKS(n) grows

relatively slower than . Indeed, Table II

predicts that the Kogge-Stone adder will have superior

performance at N =256.

Table II: Delay Results for the Kogge-Stone Adders

(all delays given in ns)

 The second and third columns represent the total

predicted delay and the delay due to routing only for the

Kogge-Stone adder from the synthesis reports of the

Xilinx ISE software. The fitted routing delay in column

four represents the predicted routing delay using a

quadratic polynomial in n based on the N = 4 to 128

data. This allows the N = 256 routing delay to be

predicted with some degree of confidence as an actual

Kogge-Stone adder at this bit width was not

synthesized. The final two columns give the predicted

adder delays for the Kogge-Stone and RCA using

equations (4) and (5), respectively. The good match

between the measured and simulated data for the

implemented Kogge-Stone adders and RCAs gives

confidence that the predicted superiority of the Kogge-

Stone adder at the 256 bit width is accurate.

 This differs from the results in [10], where the

parallelprefix adders, including the Kogge-Stone adder,

always exhibited inferior performance compared with

the RCA (simulation results out to 256 bits were

reported). The work in [10] did use a different FPGA

(Xilinx Virtex 5), which may account for some of the

differences. The poor performance of some of the other

implemented adders also deserves some comment. The

spanning tree adder is comparable in performance to the

Kogge-Stone adder at 16 bits. However, the spanning

tree adder is significantly slower at higher bit widths,

according to the simulation results, and slightly slower,

according to the measured data. The structure of the

spanning tree adder results in an extra stage of logic for

some adder outputs compared to the Kogge-Stone. This

fact coupled with the way the FPGA place and route

software arranges the adder is likely the reason for this

significant increase in delay for higher order bit widths.

Similarly, the inferior performance of the carry-skip

adders is due to the LUT delay and routing overhead

associated with each carry-skip logic structure. Even if

the carry-skip logic could be implemented with the fast-

carry chain, this would just make it equivalent in speed

to the RCA. Hence, the RCA delay represents the

theoretical lower limit for a carry-skip architecture on

an FPGA.

VI. SUMMARY AND FUTURE WORK

 Both measured and simulation results from this

study have shown that parallel-prefix adders are not as

effective as the simple ripple-carry adder at low to

moderate bit widths. This is not unexpected as the

Xilinx FPGA has a fast carry chain which optimizes the

performance of the ripple carry adder. However,

contrary to other studies, we have indications that the

carry-tree adders eventually surpass the performance of

the linear adder designs at high bit-widths, expected to

be in the 128 to 256 bit range. This is important for

large adders used in precision arithmetic and

cryptographic applications where the addition of

numbers on the order of a thousand bits is not

uncommon. Because the adder is often the critical

G.SAVITHA, MD.SHAHBAZ KHAN

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 03, Jul-Dec 2012, pp. 192-197

element which determines to a large part the cycle time

and power dissipation for many digital signal processing

and cryptographical implementations, it would be

worthwhile for future FPGA designs to include an

optimized carry path to enable treebased adder designs

to be optimized for place and routing. This would

improve their performance similar to what is found for

the RCA. We plan to explore possible FPGA

architectures that could implement a “fast-tree chain”

and investigate the possible trade-offs involved. The

built-in redundancy of the Kogge-Stone carry-tree

structure and its implications for fault tolerance in

FPGA designs is being studied. The testability and

possible fault tolerant features of the spanning tree

adder are also topics for future research.

REFERENCES

[1] N. H. E. Weste and D. Harris, CMOS VLSI Design,

4
th

 edition, Pearson–Addison-Wesley, 2011.

[2] R. P. Brent and H. T. Kung, “A regular layout for

parallel adders,” IEEE Trans. Comput., vol. C-31, pp.

260-264, 1982.

[3] D. Harris, “A Taxonomy of Parallel Prefix

Networks,” in Proc. 37th Asilomar Conf. Signals

Systems and Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A Parallel Algorithm

for the Efficient Solution of a General Class of

Recurrence Equations,” IEEE Trans. on Computers,

Vol. C-22, No 8, August 1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-

Grained Redundancy in Adders,” Int. Symp. on Quality

Electronic Design, pp. 317-321, March 2007.

[6] T. Lynch and E. E. Swartzlander, “A Spanning Tree

Carry Lookahead Adder,” IEEE Trans. on Computers,

vol. 41, no. 8, pp. 931-939, Aug. 1992.

[7] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.

Zorian, “Easily Testable Cellular Carry Lookahead

Adders,” Journal of Electronic Testing: Theory and

Applications 19, 285-298, 2003.

[8] S. Xing and W. W. H. Yu, “FPGA Adders:

Performance Evaluation and Optimal Design,” IEEE

Design & Test of Computers, vol. 15, no. 1, pp. 24-29,

Jan. 1998.

[9] M. Bečvář and P. Štukjunger, “Fixed-Point

Arithmetic in FPGA,” Acta Polytechnica, vol. 45, no. 2,

pp. 67-72, 2005.

[10] K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with FPGA

technology,” IEEE Northeast Workshop on Circuits and

Systems, pp. 498-501, Aug. 2007.

	PointTmp

