

www.ijsetr.com

ISSN 2319-8885

Vol.03,Issue.31

October-2014,

Pages:6105-6111

 Copyright @ 2014 IJSETR. All rights reserved.

Implementation of CAN Protocol for Industrial Automation
UBAID SAUDAGAR

Dept of ECE, Shadan College of Engineering and Technology, Peerancheru, Hyderabad,

Email: ubaid.saudagar@gmail.com.

Abstract: CAN protocol is a serial communication protocol and was designed for the automobile industry, but due to the

flexibility of the protocol, it has found its way in other industries as well, such as industrial automation. But one thing is

noticeable that CAN protocol uses CAN frame and is transmitted over CAN bus, requires CAN controller. Now a day’s RISC

processors are normally used in various sectors which have on chip CAN controller. Hence protocol development part doesn’t

come into play. But many industries still use CISC processors and even in the education sector, the curriculum focuses on CISC

architecture. Such controllers do not have on chip CAN controller and hence needs to be interfaced externally. Since it is

interfaced externally, its internal registers needs to be configured before the CAN frame is actually transmitted over the CAN

bus. The aim of this project is to develop the CAN protocol for the automation industry as well as for the education sector where

it can be implemented. For achieving this aim the CAN controller which is interfaced externally has different registers which

needs to be configured. The configuration of registers is done using SPI protocol. Once the registers are configured the CAN

frame is transmitted over the CAN bus at a specified Baud Rate. The protocol is transmitted over two lines viz. CANH and

CANL. It is a message based protocol, hence no clock is required. The schematic of the hardware is made using Proteus 8

professional. The software programming is done in C language in Keil µvision 5.

Keywords: CAN Protocol, SPI Protocol, CISC Architecture, Proteus 8 Professional, Keil µvision 5.

I. INTRODUCTION

 Controller Area Network (CAN) was initially created by

German automotive system supplier Robert Bosch in the

mid-1980s for automotive applications as a method for

enabling robust serial communication. The goal was to

make automobiles more reliable, safe and fuel-efficient

while decreasing wiring harness weight and complexity.

Since its inception, the CAN protocol has gained

widespread popularity in industrial automation and

automotive/truck applications. This paper presents the

development of a serial communication protocol called the

CAN Protocol. In general, RISC processors like ARM

family and PIC family come along with on chip CAN

controller, which actually generates the CAN frame. In

such processors there is no point of development of

protocol but just configuring the registers which are on

chip. When it comes to CISC processors like 8051 and

architectures based on it, CAN controller, in general is not

present on chip. In the education industry, students are still

taught the CISC architecture, hence development of CAN

protocol so that it may work with CISC processors was a

need in the education sector.

 Secondly, many automation industries still use CISC

processors like 89V51RD2. Since CAN protocol has now

found its way into automation industry as well, there was a

requirement to develop the protocol. In the scope of

developing the protocol, we need to externally interface

CAN controller and then configure it using the SPI

protocol in mode 0,0 or 1,1. To configure the registers of

CAN controllers, we need to use different SPI commands

like RESET, READ and WRITE etc. and send these

commands serially to the CAN controller. Once the

registers are configured the CAN frame is transmitted at a

specified Baud Rate on the CAN bus via a CAN

Transreciever which will generate a differential

voltage on the two lines of CAN bus i.e. CANH and

CANL. The project aims at monitoring different devices

in the system of an automation industry such as motors and

LCD. The main aim of the project is to develop CAN

protocol for CISC processors. Hence we need to interface

externally CAN controller and then configure it using SPI

protocol. Since CAN protocol has now found its way into

automation industry as well, there was a requirement to

develop the protocol. Therefore firstly the CAN controller

registers are configured using SPI protocol and thereafter

the CAN frame is generated on CAN bus.

 CAN bus uses two dedicated wires for communication.

The wires are called CAN high and CAN low. When the

CAN bus is in idle mode, both lines carry 2.5V. When data

bits are being transmitted, the CAN high line goes to 3.75V

and the CAN low drops to 1.25V, thereby generating a

2.5V differential between the lines. Since communica-

tion relies on a voltage differential between the two

UBAID SAUDAGAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

bus lines, the CAN bus is not sensitive to inductive

spikes, electrical fields or other noise. This makes

CAN bus a reliable choice for networked commun-

ications on mobile equipment.

Fig1. Data on CAN bus.

 The nature of CAN bus communications allows all

modules to transmit and receive data on the bus. Any

module can transmit data, which all the rest of the

modules receive permitting both peer-to-peer and

broadcast data transmissions.CAN bus can use

multiple baud rates up to 1 Mbit/s. The most common

baud rates are 125 Kbit/s and 250 Kbit/s. CAN is

based on the “broadcast communication mechanism”,

which is based on a message-oriented transmission

protocol. It defines message contents rather than

stations and station addresses. Every message has a

message identifier, which is unique within the whole

network since it defines content and also the priority

of the message. The CAN protocol supports two

message frame formats, the only essential difference

being in the length of the identifier. The “CAN base

frame” supports a length of 11 bits for the identifier,

and the “CAN extended frame” supports a length of

29 bits for the identifier.

Fig2. CAN message frame.

 A CAN base frame message begins with the start

bit called "Start of Frame (SOF)", this is followed by

the "Arbitration field" which consist of the identifier

and the "Remote Transmission Request (RTR)" bit

used to distinguish between the data frame and the

data request frame called remote frame. The

following "Control field" contains the "IDentifier

Extension (IDE)" bit to distinguish between the CAN

base frame and the CAN extended frame, as well as

the "Data Length Code (DLC)" used to indicate the

number of following data bytes in the "Data field". If

the message is used as a remote frame, the DLC

contains the number of requested data bytes. The

"Data field" that follows is able to hold up to 8 data

byte. The integrity of the frame is guaranteed by the

following "Cyclic Redundant Check (CRC)" sum.The

end of the message is indicated by "End of Frame

(EOF)". The "Intermission Frame Space (IFS)" is the

minimum number of bits separating consecutive

messages. Unless another station starts transmitting,

the bus remains idle after this.

II. HARDWARE DESIGN

Fig3. Hardware overview.

 The system consists of both hardware as well as

software part. The hardware part consists of 3 nodes

viz. Node A, Node B and Node C. The designing of the

hardware includes the interfacing of components,

designing of power supply and the value of components to

be used in the designing process. After the designing

process, schematic is prepared using Proteus 8

Professional.

A. Power supply design

Fig4. Power supply circuit

i. Size of core is one of the first considerations in regard of

weight and volume of transformer.

 (1)
Ai = Area of cross - section in Sq. cm. and

Implementation of CAN Protocol for Industrial Automation

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

P1 = Primary voltage.

In transformer P1 = P2

For our project we required +5V regulated output. So

transformer secondary rating is 12V, 500mA.

So secondary power wattage is,

P2 = 12 x 500 x 10
-3

W= 6W.

Therefore Ai = 2.62

ii. Turns per volt of transformer are given by relation

 (2)
Here,

f is the frequency in Hz

Bm is flux density in Wb/m2

Ai is net area of cross section.

For project for 50 Hz the turns per Volt for 0.91 Wb/m2

Turns per Volt = 50 / Ai = 50 / 2.88

 17

Thus for Primary winding = 220 x 17 = 3800

ForSecondary winding = 12 x 17 = 204

iii. R.M.S. Secondary voltage at secondary of transformer

is 12V.So maximum voltage Vm across Secondary is

= Rms. Voltage x 2

= 12 x 2

= 16.97

D.C. O/p Voltage at rectifier O/p is

 (3)

 = (2 x 16.97) /

 = 10.80 V

PIV rating of each diode is

PIV = 2 Vm.

= 2 x 16.97

= 34 V

iv. Formula for calculating filter capacitor is,

 (4)

r = ripple present at o/p of rectifier (Which is maximum 0.1

for full wave rectifier.)

F = frequency of mains A.C.

RL = I/p impedance of voltage regulator IC.

 (5)

 = 1030 f

 1000 f

v. IC 7805 (Voltage Regulator IC)

Fig5. Voltage regulator 7805.

Specifications:
Available o/p D.C. Voltage = + 5V.

Line Regulation = 0.03

Load Regulation= 0.5

Vin maximum= 35 V

Ripple Rejection= 66-80 (db)

B. Interfacing LCD display (2x16)

Fig6. Interfacing of LCD display with µc

 LCD display contains one microcontroller which controls

the various operations of LCD display. The microcontroller

takes some time to execute the command. So as to

synchronize the operation of LCD display with the

microcontroller of target board some delay is introduced

between the commands. The microcontroller also has

RAM which stores the content of the cell, this is the reason

that even after switching off the display using command its

content is retained when it is switched ON again.

1. 4-bit programming of LCD

 In 4-bit mode the data is sent in nibbles, first we send the

higher nibble and then the lower nibble. To enable the 4-bit

mode of LCD, we need to follow special sequence of

initialization that tells the LCD controller that user has

selected 4-bit mode of operation. We call this special

sequence as resetting the LCD. Following is the reset

sequence of LCD.

 Wait for about 20mS

UBAID SAUDAGAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

 Send the first init value (0x30)

 Wait for about 10mS

 Send second init value (0x30)

 Wait for about 1mS

 Send third init value (0x30)

 Wait for 1mS

 Select bus width (0x30 - for 8-bit and 0x20 for 4-

bit)

 Wait for 1mS

C. Interfacing DC motor

Fig7. DC motor interfaced with µc using L293D driver.

 As you can see in the circuit, three pins are needed for

interfacing a DC motor (A, B, Enable). If you want the o/p

to be enabled completely then you can connect Enable to

VCC and only 2 pins needed from controller to make the

motor work.

Table1. Truth table for controlling DC motor

A B Description

0 0 Motor stops or breaks

0 1 Motor runs Anti clock wise

1 0 Motor runs Clock wise

1 1 Motor stops or breaks

 As per the truth table the microcontroller is programmed

either to rotate the motor or to stop the motor.

D. Interfacing SPST switch

 As shown in the schematic above 4 SPST switches are

interfaced with the microcontroller on P0.0 – P0.3. Ideally

when the switches are in open state, logic 1 appears on the

port pins. Whenever a switch is pressed, logic 0 appears on

the port pins. Our aim is to send a message to the LCD

which is at Node B when the first switch is pressed. When

the second switch is pressed a second message is sent to

the LCD over the CAN bus.

Fig8. SPST switches interfaced with Microcontroller.

 On pressing the third switch, the DC motor switches on

and rotates in the clockwise direction. When the fourth

switch is pressed the DC motor stops rotating.

E. Interfacing P89V51RD2 with MCP2515 and MCP

2551

Fig9. Connecting CAN – SPI module with P89V51RD2

 MCP2515 is a standalone CAN controller which is

interfaced externally to microcontroller having CISC

architecture. Controllers based on RISC architectures can

also be interfaced, but RISC processors normally come

with on chip CAN controller. The MCP2515 has numerous

registers which needs to be configured before the actual

CAN frame is transmitted over the CAN bus. To configure

these registers from the microcontroller, we need to

develop SPI protocol in mode 0,0 or 1,1 and using SPI

RESET, WRITE commands, the registers are configured as

per the datasheet. Once the registers are configured the

Implementation of CAN Protocol for Industrial Automation

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

CAN frame which includes CAN ID of destination, DATA

and DLC (Data length code). The frame is given to the

CAN Transreciever which generates a differential voltage

on the CAN bus. The receiver side also has the same

module.

III. SOFTWARE DESIGN

 The MCP2515 is designed to interface directly with the

Serial Peripheral Interface (SPI) port available on many

microcontrollers and supports Mode 0, 0 and Mode 1, 1.

Commands and data are sent to the device via the SI pin,

with data being clocked in on the rising edge of SCK. Data

is driven out by the MCP2515 (on the SO line) on the

falling edge of SCK. The CS pin must be held low while

any operation is performed. The various SPI commands are

tabulated below:

Table2. SPI instruction set

 The various registers which needs to be configured using

SPI commands are tabulated below:

Table3. CAN controller Register Map

i. Software for Node A

 Node A consists of a Node controller i.e. Microcontroller

(based on 8051 architecture), CAN controller (MCP2510/

15), CAN Transreciever (MCP2551), SPST switches.

Once the CAN registers are configured the CAN

frame is transmitted over the CAN bus with

CAN_ID, DATA, and DLC (Data length code).
#include <stdio.h>

#include "89C51.h"

#include "Delay.h"

#include "MCP2510.h"

unsigned char MSG1[8]="Welcome.";

unsigned char MSG2[8]="CAN PRO.";

void main(void)

{

 mcp2510Init(250);

 canInit();

 while(1)

 {

 If (P0_0==0)

 {

 canWrite (333, MSG1, 8);

 }

 if(P0_1==0)

 {

 canWrite (333, MSG2, 8);

 }

 if(P0_2==0)

 {

 canWrite (222, "O", 1);

 }

 if(P0_3==0)

 {

 canWrite (222, "F", 1);

 }

 }

}

UBAID SAUDAGAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

ii. Software for Node B

 Node B consists of a Node controller i.e. Microcontroller

(based on 8051 architecture), CAN controller

(MCP2510/15), CAN Transreciever (MCP2551), LCD

display (2x16).

#include <stdio.h>

#include "89C51.h"

#include "Delay.h"

#include "LCD4NW.h"

#include "MCP2510.h"

unsigned int n, id;

unsigned char i, RData[8], dlc;

int main(void)

{

 SetLCD();

 LCD(0);

mcp2510Init(250);

canInit();

LCD(1);

printf("Rxd Message.....");

while(1)

{

 if((n=canPoll())!=-1)

 {

 dlc = canRead(n, RData, &id);

 if(id==333)

 {

 LCD(2);

 for(i=0;i<dlc;i++)

 {

 printf("%c",RData[i]);

 }

 }

 }

}

}

iii. Software for Node C

 Node C consists of a Node controller i.e. Microcontroller

(based on 8051 architecture), CAN controller (MCP2510

/15), CAN Transreciever (MCP2551), DC motor along

with its driver L293D.

#include <stdio.h>

#include "89C51.h"

#include "Delay.h"

#include "MCP2510.h"

unsigned int n, id;

unsigned char i, RData[8], dlc;

int main(void)

{

 //motor state initially in stop state

 P0_0=0;

 P0_1=0;

 mcp2510Init(250);

 Beep(1,300);

 canInit();

 Beep(1,300);

 while(1)

 {

 if((n=canPoll())!=-1)

 {

 dlc = canRead(n, RData, &id);

 if(id==222)

 {

 if(RData[0]=='O')

 {

 P0_0=1;

 P0_1=0;

 }

 if(RData[0]=='F')

 {

 P0_0=0;

 P0_1=0;

 }

 }

 }

 }

}

IV. RESULTS

 On pressing switch 1, a low signal is received at P0_0

which is identified in the program and a message is sent to

Node B and Node C having CAN ID = 333, MSG1 =

“Welcome.”, this message is send over the CAN bus. Since

Node C is having CAN ID = 333, it accepts the frame and

displays on the LCD screen. In the same way it happens for

switch 2, but now the message changes and displays “CAN

PRO.”.

Fig10. Switch 1 is pressed.

 On pressing switch 3, a low signal is received at P0_2

which is identified in the program and a message is sent to

Node B and Node C having CAN ID = 222, MSG1 = “O”,

this message is send over the CAN bus. Since Node B is

having CAN ID = 222, it accepts the frame and rotates the

DC motor in clockwise direction. In the same way it

Implementation of CAN Protocol for Industrial Automation

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.31, October-2014, Pages: 6105-6111

happens for switch 4, but now the message changes to “F”

and the DC motor stops.

Fig11. Switch 3 is pressed.

V. CONCLUSION

 The objective of the project is “Implementation of CAN

protocol for industrial automation” was achieved and the

protocol has been developed. Using this protocol any

industry can establish communication amongst its various

modules without depending on any particular controller.

SPI protocol, which is required for configuring the CAN

controller registers, has been developed instead of using

the SPI interface so that the protocol is even independent

of SPI interface. The protocol will also help the education

sector where more focus is on CISC architecture like

controllers which are based on architecture of 8051, hence

in this project, 89V51RD2 is used which is having flash

memory and additionally it’s an ISP chip.

VI. REFERENCE

[1] Presi.T.P “Design and Development of PIC

Microcontroller Based Vehicle Monitoring System Using

Controller Area Network (CAN) Protocol” Information

Communication and Embedded Systems (ICICES), 2013

International Conference on 21-22 Feb. 2013, pg. 1070 –

1076, Chennai.

[2] CAN specification version 2.0. Robert Bosch GmbH,

Stuttgart, Germany, 1991.

[3] Steve Corrigan, “Introduction to the Controller Area

Network”, Published by Texas Instruments Application

Report, SLOA101A, August 2002–Revised July 2008

[4] MCP 2551 High speed CAN Transceiver Datasheet.

[5] MCP 2515 Stand-Alone CAN Controller with SPI™

Interface datasheet

[6] Axiomatic Global electronic solutions, Finland, July

2006

[7] AN713 Controller Area Network (CAN) Basics by,

Keith Pazul, Microchip Technology Inc.

[8] Marco Di Natale “Understanding and using the

Controller Area Network”, October 30, 2008

[9] Steve Corrigan “Introduction to the Controller Area

Network (CAN)”, Application Report, SLOA101A–

August 2002–Revised July 2008

[10] Vikash Kumar Singh, Kumari Archana

“Implementation Of 'CAN' Protocol In Automobiles Using

Advance Embedded System”Lords Institute of Engineering

and Technology, Himayat Sagar, Hyderabad, INDIA,

International Journal of Engineering Trends and

Technology (IJETT) – Volume 4 Issue 10- Oct 2013

[11] ZoranRisticEasy8051B development systems and

CAN-SPI modules article, MikroElektronika - Software

Department.

