

www.ijsetr.com

ISSN 2319-8885

Vol.03,Issue.29

October-2014,

Pages:5891-5895

 Copyright @ 2014 IJSETR. All rights reserved.

Development of Verification Environment for SPI using OVM
K.NAGARJUNA

1
, K. PADMAJA DEVI

2

1
PG Scholar, Dept of ECE, TKR College of Engineering & Technology, Hyderabad, India.

2
Assoc Prof, Dept of ECE, TKR College of Engineering & Technology, Hyderabad, India.

Abstract: Synchronous serial interfaces are widely used to provide economical board level interfaces between different devices

such as microcontrollers, DACs ADCs and other compliant slave device. System-level verification with scalable and reusable

components provides a solution for current complex SOC verification and System Verilog with OOP is one of the most

promising languages to develop a complete verification environment with constrained random testing, functional coverage

and assertions. The SPI master core consists of three parts, Serial interface, clock generator and Wishbone interface. The SPI

core has five 32-bit registers through the Wishbone compatible interface. The serial interface consists of slave select lines, serial

clock lines, as well as input and output data lines. All transfers are full duplex transfers of a programmable number of bits per

transfer (up to 64 bits).It has 8 slave select lines but only one is selected at a time. Furthermore, constrained random testing

vectors are generated automatically and driven into the DUT for higher functional coverage. The verification result shows the

effectiveness of the proposed verification environment, which is of great feasibility for further extension and reuse. We design

the SPI Master-Slave core design using system verilog and do functional verification for our design in questasim.

Keywords: SPI, Wishbone Interface, Functional Coverage, OVM, Questasim.

I. INTRODUCTION

 The implementation of complex system-on- a-chip (SOC)

design requires hardware platforms comprised of multiple,

processors, accelerators, peripherals and programmable logic

arrays (PLA) with detailed cycle accurate description code,

namely Verilog, VHDL hardware description language

(HDL). However, the same language is not efficient enough

for verification, especially for hardware-software co-

emulation. With the traditional function simulation of

hardware followed by software development and emulation,

verification of a digital system is so time-consuming that

some say more than 70 percents of the design circle is taken

by verification with the risk of rework from the very

beginning. System-level verification with scalable and

reusable components has been paid much attention these

days. Major EDA tool vendors have proposed varieties of

verification methodologies and languages, such as Spec

manE, System Verilog, VMM (Verification Methodology

Manual), AVM (Advanced Verification Manual) and the

emerging OVM (Open Verification Manual). Among all

these methods, System Verilog with object-oriented

programming (OOP) is considered as one of the most

promising techniques for high- level function verification for

current complex SOC designs. The Currently widely used

protocols such as WISHBONE bus protocol, I2C bus

protocol, ARM bus protocol and so on, let hardware devices

to communicate through the appointment of the rules and

match the timing for achieving the purpose of exchanging

data. SPI is a serial interface protocol, compared to other

protocols, it has high transmission speed, simple to use and

little pins advantages. The four interfaces are required by

standard SPI protocol at least. The standard SPI

communication is a single-master communication, that means

all the communications are only have one master device.

II. SPI INTERFACE DIAGRAM

Fig 1: SPI Interface Diagram.

 SPI is a synchronous serial bus protocol developed by

Motorola and integrated in many of their microcontrollers.

SPI bus consists of four signals (fig 1): master out slave in

(MOSI), master in slave out (MISO), serial clock (SCK),

and active-low chip select (CS).As a multi master/slave

protocol, communications between the master and selected

slave use the unidirectional MISO and MOSI lines, to

achieve data rates over 1Mbps in full duplex mode. A

K.NAGARJUNA, K. PADMAJA DEVI

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.29, October-2014, Pages: 5891-5895

disadvantage to SPI is the requirement to have separate CS

lines for each slave. With SPI we can connect as many

devices as many pins we have on the main microcontroller.

The speed of the communication between ICs is much faster

thanks for the Full Duplex proper of the SPI

communication.

III. WISHBONE BUS INTERFACE THE WISHBONE
 System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores is a flexible design methodology for use

with semiconductor IP cores. Its purpose is to faster design

reuse by alleviating System-on-Chip integration problems.

The main objectives of this specification are to create a

flexible interconnection means for use with semiconductor

IP cores. This allows various IP cores to be connected

together to form a System on-Chip and to make

WISHBONE interfaces independent of logics signaling

levels. WISHBONE uses a MASTER/SLAVE architecture.

That means that functional modules with MASTER

interfaces initiate data transactions to participating SLAVE

interfaces. The MASTERs and SLAVEs communicate

through an interconnection interface called the INTERCON.

The INTERCON is best thought of as a „cloud‟ that

contains circuits. These circuits allow MASTERs to

communicate with SLAVEs. Mentioned below are the

wishbone interface signals used for our Serial Peripheral

Interface communication (fig 2 and 3).

Fig 2: wishbone interface.

 Here all internal WISHBONE logic is registered to the

rising edge of the [clk_i] clock input. So master clock decides

the data to send or not. The active low asynchronous reset

input [rst_i] forces the core to restart. All internal registers

are preset and all state-machines are set to an initial state.

The interrupt request output is asserted when the core needs

service from the host system. When asserted, the cycle input

[cyc_i] indicates that a valid bus cycle is in progress. The

logical AND function of [cyc_i] and [stb_i] indicates a valid

transfer cycle to/from the core. So when only the cycle input

is high strobe signal is high. The strobe input [stb_i] is

asserted when the core is being addressed. The core only

responds to WISHBONE cycles when [stb_i] is asserted,

except for the [rst_i], which always receive a response. The

address array input [adr_i] is used to pass a binary coded

address to the core. The most significant bit is at the higher

number of the array. When asserted, the write enable input

[we_i] indicates that the current bus cycle is a write cycle.

When negated, it indicates that the current bus cycle is a read

cycle. The data array input [dat_i] is used to pass binary data

from the current WISHBONE Master to the core. All data

transfers are 8 bit wide. The data array output [dat_o] is used

to pass binary data om the core to the current WISHBONE

Master. All data ansfers are 8 bit wide. When asserted, the

acknowledge utput [ack_o] indicates the normal termination

of a valid us cycle.

Fig 3: Wishbone interface signals.

IV. SPI MASTER-SLAVE OPERATION

 In the standard SPI communication, the clock signal

SCLK) through the bus from the master to send to each lave

(fig 4). All the SPI signals are synchronized by this clock

signal. How many slave devices have, the master-device will

have how much selection signal pins (CSn), which used for

electing slave devices.

Fig 4: Standard SPI communication.

Development of Verification Environment for SPI using OVM

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.29, October-2014, Pages: 5891-5895

 Recently widely used SPI devices are customized by one-to-

one or one-to-more. In standard SPI, the master device must

have many CS signals in the Multi-device communication (fig

6). The communication is a ingle-master communication that

means more than one master device connect to the slave device

is strictly prohibited. In the work mode, a master device connect

with one or more slave device, it can not be changed at this time

(fig 5). Other devices want to control the slave device which has

been controlled by another master device; it must stop master

device‟s working first and disconnect with it, then connect to

the new devices. In this way, a master device can select multiple

slave devices do not have to add extra chip select pins and

multiple master devices will use the TSM(Time Sharing

Multiplex) through the level of communication priority to

control the same slave device without to stop working. So

universal multiple devices SPI interface IP is more flexible and

effective.

Fig 5: Operation between master and slave.

 When we want to send data of 32 bit, the LSB bit is

selected and sent from master to the slave, the bit goes to the

MSB position and at the same time the slave acts as a left

shift register. This is called as MOSI (Master out Slave In).

At the same time the LSB bit in the slave goes to the LSB bit

of the master. This is called as MISO (Master in Slave Out).

Fig 6: SPI external connections.

 Here, SCK [sck_o] is generated by the master device and

synchronizes data movement in and out of the device through

the MOSI [mosi_o] and MISO [miso_o] lines. The SPI clock

is generated by dividing the WISHBONE clock [clk_i].The

division factor is software programmable. The Master Out

Slave In line is a unidirectional serial data signal. It is an

output from a master device and an input to a slave device.

The Master in Slave Out line is a unidirectional serial data

signal. It is an output from a slave device and an input to a

master device. The signal ss_pad_o is of output signal with 8

bit and it selects the slave output signals.Based on this only

the slave is selected.

V. ARCHITECTURE

 We have already known about wishbone interface signals

from above. The timing generator generates the clock. We

use different types of registers like SPCR (Serial Peripheral

Control Register), SPER(Serial Peripheral Extension

Register), SPSR(Serial Peripheral Status Register) and

SPDR(Serial Peripheral Data Register) (fig 7). Data register

has 2 registers, Transmitter register and Receiver register.

Write buffer which writes the data into the shift register and

read buffer which reads the data from the shift register. Status

register shows the status fifo whether it is full or empty or

upto how much it is filled. Control register controls all the

signals from the wishbone interface. It has registers like ASS,

IE, LSB, Tx_NEG, Rx_NEG, GO_BSY, CHAR_LEN. In

ASS if this bit is set, ss_pad_o signals are generated

automatically. This means that slave select signal, which is

selected in SS register is asserted by the SPI controller, when

transfer is started by setting CTRL[GO_BSY] and is de-

asserted after transfer is finished. If this bit is cleared, slave

select signals are asserted and de-aserted by writing and

clearing bits in SS registers. In IE if this bit is set, the

interrupt output is set active after a transfer is finished.

Fig 7: Architecture of SPI.

 The Interrupt signal is disserted after a Read or Write to

any register. In LSB If this bit is set, the LSB is sent first on

the line (bit TxL[0]), and the first bit received from the line

will be put in the LSB position in the Rx register (bit

RxL[0]). If this bit is cleared, the MSB is

transmitted/received first (which bit in TxX/RxX register that

is depends on the CHAR_LEN field in the CTRL register).In

Tx_NEG if this bit is set, the mosi_pad_o signal is changed

on the falling edge of a sclk_pad_o clock signal, or otherwise

the mosi_pad_o signal is changed on the rising edge of

sclk_pad_o.In Rx_NEG if this bit is set, the miso_pad_i

signal is latched on the falling edge of a sclk_pad_o clock

signal, or otherwise the miso_pad_i signal is latched on the

rising edge of sclk_pad_o.In GO_BSY Writing 1 to this bit

starts the transfer. This bit remains set during the transfer and

is automatically cleared after the transfer finished. Writing 0

to this bit has no effect. CHAR_LEN specifies how many bits

are transmitted in one transfer. Up to 64 bits can be

transmitted. We also have one divider register DIVIDER.

K.NAGARJUNA, K. PADMAJA DEVI

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.29, October-2014, Pages: 5891-5895

 The value in this field is the frequency divider of the system

clock wb_clk_i to generate the serial clock on the output

sclk_pad_o. The desired frequency is obtained according to

the following equation:

 (1)

VI. VERIFICATION PLAN

 Simulation and verification is a very important part of IP

core design, because it directly related to the availability of

the IP (fig 8). We simulate our design in models and do

verification using system verilog language. To verify SPI

data transmission the randomized signal of wishbone

interface, control register, divider register and slave register

are generated by calling system inbuilt randomize function. It

is done by Generator. The driver part of verification deals

with the configuration of several registers which are used in

data transmission. Firstly, Slave select register is configured

to select slave registers of receiver. Secondly, divider register

is configured to generate serial clk from wb_clk_in of

wishbone interface. Thirdly, control register of SPI core is

configured to transmit data depending on character length,

LSB, Tx_Neg etc parameters affecting data transmission. For

data transmission, the 8th bit of control register “Go_busy” is

to set '1' after register configuration. Two events are triggered

one after ss configuration and one after data transmission.

Fig 8: Verification methodology.

 The receiver part of verification deals with driving of

MISO depending on different events. The scoreboard part of

verification deals with comparison of master data and slave

data. The coverage model of our design consists of several

cover points and cross cover points which checks all the

possible scenarios of input parameter which are affecting

data transmission. The cover points are divider, ass, lsb,

Tx_Neg, Rx_Neg, data_in, character length also above cover

points are crossed together to get maximum coverage report.

To verify SPI Protocol we have used two different types of

test cases, they are: Directed Test Case and Regression test

Case. In directed test case, we are providing predefined

stimulus with required constraint to verify expected output.

In regression test case, we are extending base class (transact

or class) to different child classes where we are constraining

different input parameters to check all possible cases.

VII. SIMULATION RESULTS

 When simulated in models we get the output data as the

data given as input data (fig 9).

Fig 9: Output waveforms of SPI.

VIII. CONCLUSION

 In this paper, we have designed the SPI Master-Slave core

based upon design-reuse methodology. We simulated this

design in Questasim using OVM. We got the output data

same as the input data. Further, we have also done functional

verification and achieved 98 percent functional code

coverage for our design.

IX. REFERENCES

[1] www.opencore.org.Simon Srot. “SPI Master Core

Specification”, Rev.0.6. May 16, 2007.

[2] “Design and Implementation of a Reused Interface” 978-

0-7695-3887-7/09/$26.00 ©2009 IEEE.

[3] Wikipedia, the free encyclopedia, “Serial Peripheral

Interface Bus”, Available http://en.wikipedia.org/wiki

/Serial_Peripheral_Interface_Bus.

[4] Tianxiang Liu ”IP Design of Universal Multiple Devices

SPI Interface” 978-1-61284-632-3/11/$26.00 ©2011 IEEE.

[5] Specification for the: “WISHBONE System-on-Chip

(SoC) Interconnection Architecture for Portable IP Cores”

Revision: B.3, Released: September 7, 2002.

[6] Chris spear “System verilog for verification” second

edition.

Development of Verification Environment for SPI using OVM

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.29, October-2014, Pages: 5891-5895

Author’s Profile:

K.Nagarjuna, was born in Kurnool,

India, in 1986.He received the B.Tech

degree in Electronics and Communication

Engineering from JNTU, Hyderabad in

2012. He is pursuing M.Tech VLSI

Design at TKR College of Engineering

and Technology, Hyderabad, India.

Email: nag12k9@gmail.com,

K. Padmaja Devi, received the B.Tech

degree from JNTUA, Anatapur, India in

1999, the M.tech degree with

specialization DSCE from JNTUH,

Hyderabad, India in 2006. She is

pursuing Ph.D from Rayalaseema

University, Karnool, India. She has

published 6 national and international

papers. Currently, she is an Associate Professor in the

Electronics and Communication Engineering Department,

TKR College of Engineering and Technology, Hyderabad,

India. K. Padmaja Devi is a member of ISTE and IETE,

India. Email: ved_paddu@yahoo.co.in.

mailto:sureksu@gmail.com
mailto:ved_paddu@yahoo.co.in

