Simulation of a ZVS Interleaved Boost DC-DC Converter by using Photovoltaic System

PREM KUMAR¹, DR. V.BALA KRISHNA REDDY²

¹PG Scholar, Dept of Power Electronics & Electrical Drives, Siddhartha Institute of Technology & Sciences, Ghatkesar, Ranga Reddy, India.
²Professor & HOD, Dept of Power Electronics & Electrical Drives, Siddhartha Institute of Technology & Sciences, Ghatkesar, Ranga Reddy, India.

Abstract: This paper a novel yet simple zero-voltage switching (ZVS) interleaved boost power factor correction (PFC) DC/DC converter used to charge the traction battery of an electric vehicle from the utility systems. The proposed topology consists of a passive auxiliary circuit, placed between two phases of the interleaved front-end boost DC-DC converter, provides enough current to charge and discharge the MOSFETs’ output capacitors during turn-ON times. Therefore, the MOSFETs are turned ON at zero voltage. Now-a-days renewable energy resources plays an important role in our globe which decreases the global warming, decreases the pollution, noise free and availability of energy for to fulfill the user interests. It decreases the cost of the proposed system and also improves the system voltage with the same ZVS interleaved boost converter with the help of the photovoltaic system for the battery energy storage of an electrical vehicle application. This solar based novel interleaved DC-DC boost converter can be controlled with the controlled input voltage, input current and the output voltage by using a sinusoid pulse width modulation with the different carrier signals for the interleaved switches and the converter switches with 180 degrees phase shift which increase the efficiency of the system.

Keywords: AC/DC converter, Continuous current mode (CCM), DC-DC converter, Interleaved boost converter, Power factor correction (PFC), Zero-current switching (ZCS), Zero-voltage switching (ZVS), Solar array.

I. INTRODUCTION

With increasing concern of global warming and the depletion of fossil fuel resources, many are looking at sustainable energy solutions to preserve the earth for the future generations. Other than hydro power, wind and photovoltaic energy holds the most potential to meet our energy demands. Alone, wind energy is capable of supplying large amounts of power but its presence is highly unpredictable as it can be here one moment and gone in another way. Solar energy is present throughout the day but the solar irradiation levels vary due to sun intensity and unpredictable shadows cast by clouds, trees, birds, etc. And the common inherent drawback of wind and photovoltaic systems are their intermittent natures that make them unreliable. When a source is unavailable or insufficient in meeting the load demands, the other energy source can compensate for the variations. The Boost converters are generally used to realize input PFC and ac/dc conversion in the front end of an ac/dc converter system. In the high power applications, interleaving continuous current mode (CCM) PFC boost stages, as shown in Fig. 2, is a very common approach to effectively decrease the inductor footprint and volume as well as the output capacitor current ripple. A typical boost PFC utilizes a switch and diode devices. In the range of a few KW, power MOSFETs are usually used to realize the boost converter.

Fig.1: Block diagram with integrated different converters

Fig.2: Interleaved boost PFC circuit diagram
The main sources of switching losses in boost PFC converters are hard turn-ON of the MOSFET and the reverse recovery of the boost diode during its turn-OFF. In order to eliminate the switching losses in a MOSFET-based boost PFC converter, different auxiliary circuits have been proposed. The typical placement of a zero-voltage switching (ZVS) auxiliary circuit is shown in Fig. 3. These auxiliary circuits consist of a combination of passive components such as small inductors and capacitors and additional active components such as MOSFETs and diodes.

![ZVS auxiliary circuit in boost PFC converter](image)

Fig. 3: ZVS auxiliary circuit in boost PFC converter

The addition of an active auxiliary circuit to a PWM converter can also eliminate the reverse-recovery current of the main power boost diode if a Si device is used. It can be seen from Fig. 3 that all the auxiliary circuits have an inductor located in series with the auxiliary switch and this allows current to be gradually transferred away from the boost diode to the auxiliary switch when it is turned ON so that the charge in the diode is slowly removed during turn-OFF; with such a gradual transition from conduction state to OFF-state of the diode device and its reverse-recovery current can be greatly reduced, thus, eliminating reverse recovery losses. Fig 4 and fig 5 shows the proposed and extended AC-DC and DC-DC interleaved converters. In which the extended DC-DC interleaved boost converter can be implemented with the solar system for the battery charging hybrid electric vehicle applications.

![Extended DC-DC interleaved boost circuit diagram](image)

Fig. 5: Extended DC-DC interleaved boost circuit diagram

Fig. 6: Key waveforms of the converter for D > 0.5.

Mode I (t0 < t < t1): This mode starts when the gate pulse is applied to SA1. Once the voltage is applied to the gate, SA1 is turned ON under zero voltage. Since SA1 and SB are ON during this interval, the voltage across the auxiliary
Simulation of a ZVS Interleaved Boost DC-DC Converter by using Photovoltaic System

Inductor is zero. Thus, the current through the auxiliary circuit remains constant at \(I_{\text{Aux,p}} \). During this interval, the switch \(S_{A1} \) current, \(I_{SA1} \), is given by:

\[
i_{SA1}(t) = I_V - I_{\text{Aux,p}} - \frac{v_m}{L_A}(t-t_0) \tag{1}
\]

Mode II \((t_1 < t < t_2)\): This mode is the dead time between the phase B MOSFETs. During this interval, the auxiliary circuit current charges the output capacitance of SB 1 and discharges the output capacitance of SB 2. In this mode, the average voltage across the boost inductance LB is zero. Therefore, the current through LB remains constant at its peak value. The voltage across the auxiliary inductor is given by

\[
v_{\text{AUX}}(t) = -\frac{V_o}{(t_2 - t_1)}(t-t_1). \tag{2}
\]

Mode III \((t_2 < t < t_3)\): Once the output capacitors of SB 1 and SB 2 have been charged and discharged completely, the gate signal of SB 2 is applied and SB 2 is turned ON under ZVS. During this interval, the voltage across the auxiliary circuit is \(-V_o\). The current through the auxiliary inductor, inductor LA and switch \(S_{A1} \), is given by:

\[
i_{\text{Aux}} = I_{\text{Aux,p}} - \frac{V_o}{2L_{\text{Aux}}}(t-t_2) - \frac{V_o}{L_{\text{Aux}}}(t-t_2) \\
i_{L}(t) = I_V + \frac{v_m}{L_A}(t-t_0). \\
i_{SA1}(t) = I_V - I_{\text{Aux,p}} - \frac{v_m}{L_A}(t-t_0) \\
+ \frac{V_o}{2L_{\text{Aux}}} + \frac{V_o}{L_{\text{Aux}}}(t-t_0). \tag{3}
\]

Mode IV \((t_3 < t < t_4)\): During this mode, the output capacitor of SB 2 is charging from zero to \(V_o \) and the output capacitor of SB 1 is discharging from \(V_o \) to zero. This period is actually the dead time between SB 2 and SB 1 \((t_4 - t_3 = t_d)\).

Mode V \((t_4 < t < t_5)\): This mode starts when the gate signal is applied to SB 1. Once the gate has been applied, SB 1 is turned ON under ZVS. Since \(S_{A1} \) and SB 1 are ON during this period, the voltage across the auxiliary inductor is zero; hence, the auxiliary inductor current remains constant at its peak value, \(I_{\text{Aux,p}} \).

Mode VI \((t_5 < t < t_6)\): During this mode, the output capacitor of \(S_{A1} \) is charging from zero to \(V_o \) and the output capacitor of \(S_{A2} \) is discharging from \(V_o \) to zero. This period is actually the dead time between \(S_{A1} \) and \(S_{A2} \) \((t_6 - t_5 = t_d)\). In this period, the current through the boost inductor \(L_A \) remains constant at its peak value.

III. CONTROLLER SYSTEM DESIGN

The below figure shows the controller design of interleaved DC-DC boost converter for improving the efficiency of the switching conditions. The voltage controller and current controllers controls the voltage and current from the input and the output. And the pulse width modulation can generate the pulses depending on the carrier signal and the reference signal with the high switching frequency.

IV. OVERVIEW OF A PHOTOVOLTAIC (PV) MODULE

To understand the PV module characteristics it is necessary to study about PV cell at first. A PV cell is the basic structural unit of the PV module that generates current carriers when sunlight falls on it. The power generated by these PV cell is very small. To increase the output power the PV cells are connected in series or parallel to form PV module. The electrical equivalent circuit of the PV cell is shown in Fig8.

The main characteristics equation of the PV module is given by

\[
I = I_{pv} - I_o \left[\exp \left(\frac{q(V + R_s)}{aKT} \right) - 1 \right] \frac{V + R_s}{R_{sh}} \tag{4}
\]

\[
I_o = I_{o,n} \left(\frac{T}{T_n} \right)^{q} \exp \left[\frac{qE_g}{aKT} \left(\frac{1}{T_n} - \frac{1}{T} \right) \right] \tag{5}
\]

\[
I_{PV} = \left[I_{SC} + K_i(T - T_n) \right] \frac{G}{G_n} \tag{6}
\]

Where,

I and V - cell output current and voltage;
\(I_o \) - cell reverse saturation current;
T - Cell temperature in Celsius;
K - Boltzmann’s constant;
q - Electronic charge;
K_i - short circuit current/temperature coefficient;
G - Solar radiation in W/m2;
\(G_n \) - nominal solar radiation in W/m2;
E_g - energy gap of silicon;
\(I_{o,n} \) - nominal saturation current;
R_s - Series resistance;
R_{sh} - Shunt resistance;

Fig 7: Control system modeling diagram.

Fig 8: Electrical equivalent circuit diagram of PV cell.
The I-V characteristic of a PV module is highly non-linear in nature. This characteristic drastically changes with respect to changes in the solar radiation and cell temperature. Whereas the solar radiation mainly affects the output current, the temperature affects the terminal voltage. Fig. 2 shows the I-V characteristic of the PV module under varying solar radiation at constant cell temperature (T = 25 °C).

V. SIMULATION RESULTS

The below figures show the simulation diagrams of a proposed and extended DC-DC interleaved converter and their output voltage and output current simultaneously. In the proposed converter, the input is 170 V which is increased to 233 V by using an AC-DC interleaved boost converter as shown in below graphs. As coming to the extended converter, the DC-DC interleaved boost converter with the solar system getting voltage as 27 V to nearly 100 V as the output.
Simulation of a ZVS Interleaved Boost DC-DC Converter by using Photovoltaic System

Fig.14: Extended DC-DC interleaved boost converter with solar simulation circuit diagram.

Fig15: input voltage and current

Fig16: Output voltage and output current

IV. CONCLUSION

In this paper, a new interleaved boost PFC converter is proposed with the renewable energy applications, which provides soft switching for the power MOSFETs through an auxiliary circuit. This auxiliary circuit provides reactive current during the transition times of the MOSFETs to charge and discharge the output capacitors of the MOSFETs. In this DC-DC interleaved converter is operated on the PV system with the auxiliary circuit decreases the harmonics and provides the lagging current at switching timings. The control system effectively optimizes the amount of reactive current required to achieve ZVS for the power MOSFETs. The frequency loop, which is introduced in the control system, determines the frequency of the modulator based on the load condition and the duty cycle of the converter. The simulation results and efficiency curves show the superior performance of the proposed converter compared to the conventional one.

V. REFERENCES

[12] C. A. Gallo, F. L. Tofoli, and J. A. C. Pinto, “Two-stage isolated switchmode power supply with high efficiency and