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Abstract: In this project, is to convert the speech waveform, using digital signal processing tools, to a set of features 

at a considerably lower information rate for further analysis,  the voice is enriched to convey not only the intended 

semantic message but also the emotional state of the speaker. The pitch contour is one of the important properties of 

speech that is affected by this emotional modulation. Although pitch features have been commonly used to 

recognize emotions, it is not clear what aspects of the pitch contour are the most emotionally salient. This paper 

presents an analysis of the statistics derived from the pitch contour. First, pitch features derived from emotional 

speech samples are compared with the ones derived from neutral speech, by using symmetric Kullback–Leibler 

distance. the speech can be modeled by some speech parameters like Mel frequency Cepstrum coefficients (MFCC) 

are the most widely used parameters in area of speech processing. We also have employed the same in our research. 

LPCs are derived on the assumption that speech signal is linear in nature and MFCCs are derived on the assumption 

that signal is logarithmic in nature this emotional modulation. 

Keyword:  MFCC, Emotional speech analysis, emotional speech recognition, pitch contour analysis. 

1. INTRODUCTION 

       EMOTION plays a crucial role in day-to-day 

interpersonal human interactions. Recent findings have 

suggested that emotion is integral to our rational and 

intelligent decisions. It helps us to relate with each other 

by expressing our feelings and providing feedback. This 

important aspect of human interaction needs to be 

considered in the design of human–machine interfaces 

(HMIs) [1]. To build interfaces that are more in tune 

with the users‘ needs and preferences, it is essential to 

study how emotion modulates and enhances the verbal 

and nonverbal channels in human communication.         

Speech prosody is one of the important communicative 

channels that is influenced by and enriched with 

emotional modulation. The intonation, tone, timing, and 

energy of speech are all jointly influenced in a 

nontrivial manner to express the emotional message [2]. 

The standard approach in current emotion recognition 

systems is to compute high-level statistical information 

from prosodic features at the sentence-level such as 

mean, range, variance, maximum, and minimum of F0 

and energy. 

      The speech signal is a slowly timed varying signal 

(it is called quasi-stationary).   An example of speech 

signal is shown in Figure 1.  When examined over a 

sufficiently short period of time (between 5 and 100 

msec), its characteristics are fairly stationary.  However, 

over long periods of time (on the order of 1/5 seconds or 

more) the signal characteristic change to reflect the 

different speech sounds being spoken.  Therefore, short-

time spectral analysis is the most common way to 

characterize the speech signal. A wide range of 

possibilities exist for parametrically representing the 

speech signal for the speaker recognition task, such as 

Linear Prediction Coding (LPC), Mel-Frequency 

Spectrum Coefficients (MFCC), and others.  MFCC is 

perhaps the best known and most popular, and will be 

described in this paper. 

 

             MFCC are based on the known variation of the 

human ear‘s critical bandwidths with frequency, filters 

spaced linearly at low frequencies and logarithmically at 

high frequencies have been used to capture the 

phonetically important characteristics of speech.  This is 

expressed in the Mel-frequency scale, which is a linear 

frequency spacing below 1000 Hz and a logarithmic 

spacing above 1000 Hz.  The process of computing 

MFCC is described in more detail next. 

 

           This paper focuses on one aspect of expressive 

speech prosody: the F0 (pitch) contour. The goal of this 
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paper is twofold. The first is to study which aspects of 

the pitch contour are manipulated during expressive 

speech (e.g., curvature, contour, shape, dynamics). For 

this purpose, we present a novel framework based on 

Kullback–Leibler divergence (KLD) and logistic 

regression models to identify, quantify, and rank the 

most emotionally salient aspects of the F0 contour. 

Different acted emotional databases are used for the 

study, spanning different speakers, emotional categories 

and languages (English and German). First, the 

symmetric Kullback–Leibler distance is used to 

compare the distributionsof different pitch statistics 

(e.g., mean, maximum) between emotional speech and 

reference neutral speech. Then, a logistic regression 

analysis is implemented to discriminate emotional 

speech from neutral speech using the pitch statistics as 

input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Example of speech signal 

 

           These experiments provide insights about the 

aspects of pitch that are modulated to convey emotional 

goals. The second goal is to use these emotionally 

salient features to build robust prosody speech models 

to detect emotional speech. In our recent work, we 

introduced the idea of building neutral speech models to 

discriminate emotional speech from neutral speech [6]. 

This approach is appealing since many neutral speech 

corpora are available, compared to emotional speech 

corpora, allowing the construction of robust neutral 

speech models. Furthermore, since these models are 

independent of the specific emotional databases, they 

can be more easily generalized to real-life applications 

[7]. While the focus on our previous paper was on 

spectral speech models, this paper focuses on features 

derived from the F0 contour. Gaussian mixture models 

(GMMs) are trained using the most discriminative 

aspects of the pitch contour, following the analysis 

results presented in this paper. 

        The results reveal that features that describe the 

global aspects (or properties) of the pitch contour, such 

as the mean, maximum, minimum, and range, are more 

emotionally salient than features that describe the pitch 

shape itself (e.g., slope, curvature, and inflexion). 

However, features such as pitch curvature provide 

complementary information that is useful for emotion 

discrimination. The classification results also indicate 

that the models trained with the statistics derived over 

the entire sentence have better performance in terms of 

accuracy and robustness than when they are trained with 

features estimated over shorter speech regions (e.g., 

voiced segments).  

II.       PROPOSED METHODOLOGY 

         The fundamental frequency or F0 contour (pitch), 

which is a prosodic feature, provides the tonal and 

rhythmic properties of the speech. It predominantly 

describes the speech source rather than the vocal tract 

properties. Although it is also used to emphasize 

linguistic goals conveyed in speech, it is largely 

independent of the specific lexical content of what is 

spoken in most languages [7]. The fundamental 

frequency is also a supra-segmental speech feature, 

where information is conveyed over longer time scales 

than other segmental speech correlates such as spectral 

envelope features. Therefore, rather than using the pitch 

value itself, it is commonly accepted to estimate global 

statistics of the pitch contour over an entire utterance or 

sentence (sentence-level) such as the mean, maximum, 

and standard deviation.  

         However, it is not clear that estimating global 

statistics from the pitch contour will provide local 

information of the emotional modulation [9]. Therefore, 

in addition to sentence-level analysis, we investigate 

alternative time units for the F0 contour analysis. 

Examples of time units that have been proposed to 

model or analyze the pitch contour include those at the 

foot-level [8], word-level [10], and even syllable-level 

[1]. In this paper, we propose to study the pitch features 

extracted over voiced regions (hereon referred as 

voiced-level). In this approach, the frames are labeled as 

voiced or unvoiced frames according to their F0 value 

(greater or equal to zero). Consecutive voiced frames 

are joined to form a voiced region over which the pitch 

statistics are estimated. The average duration of this 

time unit is 167 ms. The lower and upper quartiles are 

60 and 230 ms, respectively. The motivation behind 

using voiced region as a time unit is that the voicing 

process, which is influenced by the emotional 

modulation, directly determines voiced and unvoiced 

regions. Therefore, analysis along this level may shed 

further insights into emotional influence on the F0 

contour not evident from the sentence level analyses.  
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        From a practical viewpoint, voiced regions are 

easier to segment compared to other short time units, 

which require forced alignment (word and syllable) or 

syllable stress detections (foot). In real-time 

applications, in which the audio is continuously 

recorded, this approach has the advantage that smaller 

buffers are required to process the audio. Also, it does 

not require pre-segmenting the input speech into 

utterances. Both sentence- and voiced-level pitch 

features are analyzed in this paper. 

            For the sake of generalization, the results 

presented in this paper are based on four different acted 

emotional databases (three for training and testing and 

one for validation) recorded from different research 

groups and spanning different emotional categories. 

Therefore, some degree of variability in the recording 

settings and the emotional elicitation is included in the 

analysis. Instead of studying the pitch contour in terms 

of emotional categories, the analysis is simplified to a 

binary problem in which emotional speech is contrasted 

with neutral speech (i.e., neutral versus emotional 

speech). This approach has the advantage of being 

independent of the emotional descriptors (emotional 

categories or attributes), and it is useful for many 

practical applications such as automatic expressive 

speech mining. In fact, it can be used as a first step in a 

more sophisticated multiclass emotion recognition 

system in which a second level classification would be 

used to achieve a finer emotional description of the 

speech. 

III. Mel-frequency Spectrum coefficients processor 

 

     A block diagram of the structure of an MFCC 

processor is given in Figure 3.  The speech input is 

typically recorded at a sampling rate above 10000 Hz.  

This sampling frequency was chosen to minimize the 

effects of aliasing in the analog-to-digital conversion.  

These sampled signals can capture all frequencies up to 

5 kHz, which cover most energy of sounds that are 

generated by humans.  As been discussed previously, 

the main purpose of the MFCC processor is to mimic 

the behavior of the human ears.  In addition, rather than 

the speech waveforms themselves, MFFC are shown to 

be less susceptible to mentioned variations. 

 

Frame Blocking: In this step the continuous speech 

signal is blocked into frames of N samples, with 

adjacent frames being separated by M (M < N).  The 

first frame consists of the first N samples.  The second 

frame begins M samples after the first frame, and 

overlaps it by N - M samples and so on.  This process 

continues until all the speech is accounted for within 

one or more frames.  Typical values for N and M are N 

= 256 (which is equivalent to ~ 30 msec windowing and 

facilitate the fast radix-2 FFT) and M = 100. 

 

Windowing: The next step in the processing is to 

window each individual frame so as to minimize the 

signal discontinuities at the beginning and end of each 

frame.  The concept here is to minimize the spectral 

distortion by using the window to taper the signal to 

zero at the beginning and end of each frame.  If we 

define the window as 10),(  Nnnw , where N 

is the number of samples in each frame, then the result 

of windowing is the signal 

10),()()(  Nnnwnxny ll         ( 1) 

 

Typically the Hamming window is used, which has the 

form: 
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Fast Fourier Transform (FFT): The next processing 

step is the Fast Fourier Transform, which converts each 

frame of N samples from the time domain into the 

frequency domain.  The FFT is a fast algorithm to 

implement the Discrete Fourier Transform (DFT), 

which is defined on the set of N samples {xn}, as 

follow: 
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In general Xk‘s are complex numbers and we only 

consider their absolute values (frequency magnitudes).  

The resulting sequence {Xk} is interpreted as follow: 

positive frequencies 2/0 sFf   correspond to 

values 12/0  Nn , while negative frequencies 

02/  fFs
 correspond to 112/  NnN .  

Here, Fs denotes the sampling frequency. The result 

after this step is often referred to as spectrum or 

periodogram. 

 

Mel-frequency Wrapping: As mentioned above, 

psychophysical studies have shown that human 

perception of the frequency contents of sounds for 

speech signals does not follow a linear scale.  Thus for 

each tone with an actual frequency, f, measured in Hz, a 

subjective pitch is measured on a scale called the ‗Mel‘ 

scale.  The Mel-frequency scale is a linear frequency 

spacing below 1000 Hz and a logarithmic spacing above 

1000 Hz.   
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Figure2. An example of Mel-spaced Filter bank 

 

One approach to simulating the subjective spectrum is 

to use a filter bank, spaced uniformly on the Mel-scale 

(see Figure 2).  That filter bank has a triangular band 

pass frequency response, and the spacing as well as the 

bandwidth is determined by a constant Mel frequency 

interval.  The number of Mel spectrum coefficients, K, 

is typically chosen as 20.  Note that this filter bank is 

applied in the frequency domain, thus it simply amounts 

to applying the triangle-shape windows as in the Figure 

4 to the spectrum.  A useful way of thinking about this 

Mel-wrapping filter bank is to view each filter as a 

histogram bin (where bins have overlap) in the 

frequency domain. 

 

Cepstrum: In this final step, we convert the log Mel 

spectrum back to time.  The result is called the Mel 

frequency cepstrum coefficients (MFCC).  The cepstral 

representation of the speech spectrum provides a good 

representation of the local spectral properties of the 

signal for the given frame analysis. Because the Mel 

spectrum coefficients (and so their logarithm) are real 

numbers, we can convert them to the time domain using 

the Discrete Cosine Transform (DCT).  Therefore if we 

denote those Mel power spectrum coefficients that are 

the result of the  procedure described above, for each 

speech frame of around 30msec with overlap, a set of 

Mel-frequency cepstrum coefficients is computed.  

These are result of a cosine transform of the logarithm 

of the short-term power spectrum expressed on a Mel-

frequency scale.  This set of coefficients is called an 

acoustic vector.  Therefore each input utterance is 

transformed into a sequence of acoustic vectors.   In the 

next section we will see how those acoustic vectors can 

be used to represent and recognize the voice 

characteristic of the speaker. Furthermore, if there exists 

some set of patterns that the individual classes of which 

are already known, then one has a problem in 

supervised pattern recognition.  These patterns comprise 

the training set and are used to derive a classification 

algorithm.  The remaining patterns are then used to test 

the classification algorithm; these patterns are 

collectively referred to as the test set.  If the correct 

classes of the individual patterns in the test set are also 

known, then one can evaluate the performance of the 

algorithm. 

 

        The state-of-the-art in feature matching techniques 

used in speaker recognition include Dynamic Time 

Warping (DTW), Hidden Markov Modeling (HMM), 

and Vector Quantization (VQ).  In this project, the VQ 

approach will be used, due to ease of implementation 

and high accuracy.  VQ is a process of mapping vectors 

from a large vector space to a finite number of regions 

in that space.  Each region is called a cluster and can be 

represented by its center called a codeword.  The 

collection of all code words is called a codebook. 

 

      The distance from a vector to the closest codeword 

of a codebook is called a VQ-distortion.  In the 

recognition phase, an input utterance of an unknown 

voice is ―vector-quantized‖ using each trained codebook 

and the total VQ distortion is computed.  The speaker 

corresponding to the VQ codebook with smallest total 

distortion is identified as the speaker of the input 

utterance.  

 

Speaker 1

Speaker 1
centroid
sample

Speaker 2
centroid
sample

Speaker 2

VQ distortion

 
 

Figure 3. Conceptual diagram illustrating vector 

quantization codebook formation. 

 

One speaker can be discriminated from another based of 

the location of centroids. VQ is a process of mapping 

vectors from a large vector space to a finite number of 

regions in that space.  Each region is called a cluster and 

can be represented by its center called a codeword.  The 

collection of all code words is called a codebook. 
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IV. SIMULATION RESULTS 
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Figure4: Input Speech signal at different Emotions 
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Figure5:  Most emotional prominent features 

according to the average symmetric KLD ratio 

between features derived from emotional and 

neutral speech. The figures show the sentence-level 

(top) and voiced-level (bottom) features. 
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Figure6: Speech Signal Power Spectrum and 

Logarithmic Power Spectrum 
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Figure7: Power Spectrum at different Emotions 

Salient Aspects 
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Figure8: MFCC filter bank. 
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Figure9: Different Voice Emotion Estimation 

Comparison using Vector Quantization. 

V. CONCLUSION 

         This paper presented an analysis of different 

expressive pitch contour statistics with the goal of 

finding the emotionally salient aspects of the F0 contour 

(pitch). For this purpose, two experiments were 

proposed. In the first experiment, the distribution of 

different pitch features was compared with the 

distribution of the features derived from neutral speech 

using the symmetric KLD with MFCC and Vector 

Quantization Method, Both experiments indicate that 

dynamic statistics such as mean, maximum, minimum, 

and range of the pitch are the most salient aspects of 

expressive pitch contour. The statistics were computed 

at sentence and voiced region levels. The results 

indicate that the system based on sentence-level features 

outperforms the one with voiced-level statistics both in 

accuracy and robustness, which facilitates a turn-by-turn 

processing in emotion detection. 
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