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Abstract: Although redundant addition is widely used to design parallel multi operand adders for ASIC implementations, the 

use of redundant adders on Field Programmable Gate Arrays (FPGAs) has generally been avoided. The main reasons are the 

efficient implementation of carry propagate adders (CPAs) on these devices (due to their specialized carry-chain resources) as 

well as the area overhead of the redundant adders when they are implemented on FPGAs. This paper presents different 

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They present a fast critical path, 

independent of bit width, with practically no area overhead compared to CPA trees. Along with the classic carry-save 

compressor tree, we present a novel linear array structure, which efficiently uses the fast carry-chain resources. This approach is 

defined in a parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or vendor. A 

detailed study is provided for a wide range of bit widths and large number of operands. Compared to binary and ternary CPA 

trees, increases speedups for 16-bit width. 

Keywords: Modelsim 6.4b, Xilinx ISE 10.1LanguagesVerilog HDL. 

I. INTRODUCTION 

      As the scale of integration keeps growing, more and 

more sophisticated signal processing systems are being 

implemented on a VLSI chip. These signal processing 

applications not only demand great computation capacity 

but also consume considerable amount of energy. While 

performance and Area remain to be the two major design 

tolls, power consumption has become a critical concern in 

today‘s VLSI system design[1]. The need for low-power 

VLSI system arises from two main forces. First, with the 

steady growth of operating frequency and processing 

capacity per chip, large currents have to be delivered and the 

heat due to large power consumption must be removed by 

proper cooling techniques. Second, battery life in portable 

electronic devices is limited. Low power design directly 

leads to prolonged operation time in these portable devices. 

Addition usually impacts widely the overall performance of 

digital systems and a crucial arithmetic function. In 

electronic applications adders are most widely used. 

Applications where these are used are multipliers, DSP to 

execute various algorithms like FFT, FIR and IIR. Wherever 

concept of multiplication comes adders come in to the 

picture. As we know millions of instructions per second are 

performed in microprocessors.  

     So, speed of operation is the most important constraint to 

be considered while designing multipliers. Due to device 

portability miniaturization of device should be high and 

power consumption should be low. Devices like Mobile, 

Laptops etc. require more battery backup. So, a VLSI 

designer has to optimize these three parameters in a design. 

These constraints are very difficult to achieve so depending 

on demand or application some compromise between 

constraints has to be made. Ripple carry adders exhibits the 

most compact design but the slowest in speed. Whereas 

carry look ahead is the fastest one but consumes more area. 

Carry select adders act as a compromise between the two 

adders. In 2002, a new concept of hybrid adders is presented 

to speed up addition process by Wang et al. that gives 

hybrid carry look-ahead/carry select adders design. In 2008, 

low power multipliers based on new hybrid full adders is 

presented. 

II. NEED FOR LOW POWER DESIGN 

    The design of portable devices requires consideration for 

peak power consumption to ensure reliability and proper 

operation. However, the time averaged power is often more 

critical as it is linearly related to the battery life. There are 

four sources of power dissipation in digital CMOS circuits: 

switching power, short-circuit power, leakage power and 

static power. The following equation describes these four 

components of power 

 

                        (1) 

A. Low Voltage  
    Power consumption is linearly proportional to voltage 

swing (Vs) and supply voltage (Vdd) as indicated in Eq. 

(2.5). For most CMOS logic families, the swing is typically 

rail-to-rail. Hence, power consumption is also said to be 

proportional to the square of the supply voltage, Vdd. 
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Therefore, lowering the Vdd is an efficient approach to 

reduce both energy and power, presuming that the signal 

voltage swing can be freely chosen. This is, however, at the 

expense of the delay of circuits. The delay, td, can be shown 

to be proportional to. The exponent is between 1 and 2. It 

tends to be closer to 1 for MOS transistors that are in deep 

sub-micrometer region, where carrier velocity saturation 

may occur. increases toward 2 for longer channel 

transistors. The current technology trends are to reduce 

feature size and lower supply voltage. Lowering Vdd leads to 

increased circuit delays and therefore lower functional 

throughput. Smaller feature size, however, reduces gate 

delay, as it is inversely proportional to the square of the 

effective channel length of the devices. In addition, thinner 

gate oxides impose voltage limitation for reliability reasons. 

Hence, the supply voltage must be lowered for smaller 

geometries. The net effect is that circuit performance 

improves as CMOS technologies scale down, despite of the 

Vdd reduction. Therefore, the new technology has made it 

possible to fulfill the contradicting requirements of low-

power and high throughput. 

III. EXISTING SYSTEM 

   In this paper, we study the efficient implementation of 

multioperand redundant compressor trees in modern FPGAs 

by using their fast carry resources. Our approaches strongly 

reduce delay and they generally present no area overhead 

compared to a CPA tree. Moreover, they could be defined at 

a high level based on an array of standard CPAs. As a 

consequence, they are compatible with any FPGA family or 

brand, and any improvement in the CPA system of future 

FPGA families would also benefit from them. Furthermore, 

due to its simple structure, it is easy to design a parametric 

HDL core, which allows synthesizing a compressor tree for 

any number of operands of any bit width. Compared to 

previous approaches, our design presents better 

performance, is easier to implement, and offers direct 

portability. 

IV. PROPOSED SYSTEM 

   In this section, we present different approaches to 

efficiently map CS compressor trees on FPGA devices. In 

addition, approximate area and delay analysis are conducted 

for the general case. Let us consider a generic compressor 

tree of Nop input operands with N bit width each. We also 

assume the same bit width for input and output operands. 

Thus, input operands should have previously been zero or 

sign extended to guarantee that no overflow occurs. A 

detailed analysis of the number of leading guard bits 

required for multi operand CS addition is provided. 

Applications:  

 Digital signal processors. 

 Microprocessors.  

 Controllers. 

Objective: The area overhead of the redundant adders when 

they are implemented on FPGAs Present a fast critical path, 

independent of bit width, with practically no area overhead 

compared to CPA trees.  

A. Deign Implementation 

  The classic design of a multi-operand CS compressor tree 

attempts to reduce the number of levels in its structure. The 

3:2 counter or the 4:2 compressor are the most widely 

known building blocks to implement it. We select a 4:2 

compressor as the basic building block, because it could be 

efficiently implemented on Xilinx FPGAs. The implement-

tation of a generic CS compressor tree requires [Nop/2]-1, 

4:2 compressors (because each one eliminates two signals), 

whereas a carry-propagate tree uses. In the previous 

approach, specialized carry resources are only used in the 

design of a single 4:2 compressor, but these resources have 

not been considered in the design of the whole compressor 

tree structure. To optimize the use of the carry resources, we 

propose a compressor tree structure similar to the classic 

linear array of CSAs. 

 
Fig.1. 

     However, in our case, given the two output words of 

each adder (sum-word and carry-word), only the carry-word 

is connected from each CSA to the next, whereas the sum 

words are connected to lower levels of the array. Fig. 1 

shows an example for a 9:2 compressor tree designed using 

the proposed linear structure, where all lines are N bit width 

buses, and carry signal are correctly shifted. For the CSA, 

we have to distinguish between the regular inputs (A and B) 

and the carry input (Ci in the figure), whereas the dashed 

line between the carry input and output represents the fast 

carry resources. With the exception of the first CSA, where 

Ci is used to introduce an input operand, on each CSA Ci is 

connected to the carry output (Co) of the previous CSA, as 

shown in Fig.1. Thus, the whole carry-chain is preserved 

from the input to the output of the compressor tree (from I0 

to Cf). First, the two regular inputs on each CSA are used to 

add all the input operands (Ii). When all the input operands 

have been introduced in the array, the partial sum-words (Si) 

previously generated are then added in order (i.e., the first 

generated partial sums are added first). 
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V. IMPLEMENTATION RESULTS AND 

COMPARISON 

     To measure the effectiveness of the designs presented in 

this paper, we have developed two generic VHDL modules 

implementing the proposed compressor tree structures: 

First, the linear array implemented by using CPAs (binary 

and ternary) and, second, the 4:2 compressor tree using the 

design of the compressor presented in [28]. Both modules 

provide the output result in CS format and allow the 

selection of different parameters such as: The number of 

operands (Nop), the number of bits per operand (N), and the 

basic building blocks (i.e., binary or ternary adder) for the 

linear array. For the purposes of comparison, similar 

modules, which implement classic adder tree structures 

based on binary CPAs and ternary CPAs, have also been 

developed. All these modules were simulated using 

Modelsim SE 6.3f and they were synthesized using Xilinx 

ISE 9.2, targeting Spartan-3A, Virtex-4, and Virtex-5 

devices. A generic ternary adder module was designed 

following the recommendations of Xilinx [46], because this 

adder is not automatically supported by ISE 9.2. 

Furthermore, to investigate their portability, compressor 

trees based onnternary CPAs were also synthesized to target 

the Altera Stratix-II family. In this case, the ternary adders 

are directlyinstantiated at a high level. We now summarize 

the main results obtained in this study. 

A. Results on FPGA Families with Support for Binary 

CPAs 

     For the sake of simplicity, of the two FPGA families 

tested (Spartan-3A and Virtex-4), only the results 

corresponding to the Virtex-4 family are presented, because 

the results are very similar for both families. On these 

FPGAs, the compressor trees based on ternary adders are 

not efficiently implemented, and thus, we have only tested 

the ones based on binary adders. For purposes of clarity, let 

us denote as CPA tree the classic tree structure based on 

CPAs, OUR array the proposed linear array structure based 

on 3:2 CSAs, and 4:2 tree the classic tree structure based on 

a 4:2 compressors. Regarding the area, Fig. 8 shows the 

number of LUTs required by the different compressor tree 

structures when Varying Nop from 4 to 128 operands, for 

16- and 64-bit widths. With the exception of 4- and 5-

operand compressor trees, which we consider separately, the 

area used for the three compressor trees is very similar and 

varies linearly with the number of operands and the bit 

width, as expected.  

     Specifically, the area of CPA tree and OUR array is 

practically identical, whereas the 4:2 tree requires a little 

more area (up to 6 percent for a 16-bit width and up to 2 

percent for a 64-bit width), due to the implementation of 

boundary bits on the 4:2 CA. Let us now consider the cases 

of four and five operands. The CPAs involved in the 

implementation of OUR array are only 2- and 3-bit width 

for all operand sizes. Given this small size, the synthesis 

tool implements these CPAs by exclusively using LUTs, 

and not the specialized carry-chain, because this produces 

faster circuits. As a consequence, there is an increase in area 

for these particular cases (as shown in Fig. 8), which could 

be eliminated by manually designing low-level CPAs or by 

changing the synthesis tool. On the other hand, this faster 

CPA implementation leads to more significant speedups for 

these cases, as shown in the following. 

 
Fig.2. 

 
Fig.3. 

       Regarding speed, Fig. 9 shows the speedup achieved 

when using OUR array instead of CPA tree, for different 

numbers of operands and varying the number of bits 

from16- to 96-bit width. As can be seen, OUR array is 

always faster than CPA tree, and the speedup practically 

grow linearly in relation to number of bits. This is due to the 

linear dependency of the delay on the CPAs, whereas the 

delay remains constant for CSAs. Thus, although the 

speedup achieved for 16-bit width is moderate, i.e., 12 to 50 

percent faster (in the range of values selected for Nop and 

excluding4- and 5-operand compressor trees), for 64-bit 

width the speedup ranges from 44 to 104 percent faster. As 

mentioned above, 4- and 5-operand compressor trees 

achieve high speedup due to the small CPAs required. The 

speedup achieved is very dependent on the number of 

operands Nop. On the one hand, the growth of the speedup 
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in relation to N (i.e., the slope) increases when Nop 

decreases. On the other hand, the starting point of the 

speedup line generally decreases when Nop increases, 

although it presents a strong increase for certain values of 

Nop. For this reason, and due to compressing the maximum 

amount of information while keeping the image simple, we 

have used values of Nop, which can be used as bounds of 

monotonic intervals. In this way, for values of Nop between 

five and eight operands, the line of the speedup is between 

these bound lines; for values of Nop between 9 and16 

operands, the line is between these bound lines, and soon.  

     In addition, inside these ranges, and for a fixed number 

of bits, the speedup always decreases when the number of 

operands increases. Fig. 10 represents the delay changes in 

relation Nop from 4 to 128 operands for N equal to 16 and 

64 bits. For all cases, OUR array is the fastest solution, 

whereas CPA tree is faster than 4:2 tree when N is 16 

(except for Nop lower than 9); we obtain the opposite result 

when N is 64 bits. The graphs corresponding to CPA tree 

and 4:2 tree are arranged in steps. They present an almost 

imperceptible growth in delay when Nop increases, but a 

very high growth occurs when Nop is a power of two. This 

behavior is due to the introduction of a new level of adders 

at these points. Nevertheless, the behavior of OUR array is 

smoother because the delay of the proposed structure 

depends on both the number of levels and the number of 

adders on each level (see Section 3.2). This figure makes 

clear the behavior shown in Fig. 9. Similar behavior in 

relation to Nop is observed when comparing OUR array 

with 4:2 tree.  However, in this case, the speedup achieved 

is practically independent of the number of bits N.  

     We should also note that when the bit width N is very 

low compared to Nop, the maximum delay of OUR array is 

limited due to the effect of the ending CPAs, as stated in 

Section 3.3. For this reason, in Fig. 10, the delay of OUR 

array for more than 64 operands is smaller for 16-bit width 

see Fig. 10a) than for 64-bit width (see Fig. 10b). Table 1 

presents the bounds and the average of the speedups 

obtained by using OUR array or 4:2 tree instead of CPA 

tree, for different ranges of Nop. The OUR array approach 

is clearly superior to the classic 4:2 tree, and it could 

achieve strongly reduced delays, even for short bit widths. 

 

VI. CONCLUSION 

     Efficiently implementing CS compressor trees on FPGA, 

in terms of area and speed, is made possible by using the 

specialized carry-chains of these devices in a novel way. 

Similar to what happens when using ASIC technology, the 

proposed CS linear array compressor trees lead to marked 

improvements in speed compared to CPA approaches and, 

in general, with no additional hardware cost. Furthermore, 

the proposed high-level definition of CSA arrays based on 

CPAs facilitates ease-of-use and portability, even in relation 

to future FPGA architectures, because CPAs will probably 

remain a key element in the next generations of FPGA. We 

have compared our architectures, implemented on different 

FPGA families, to several designs and have provided a 

qualitative and quantitative study of the benefits of our 

proposals. 
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