

www.ijsetr.com

ISSN 2319-8885

Vol.04,Issue.04

February-2015,

Pages:0625-0628

 Copyright @ 2015 IJSETR. All rights reserved.

Multi Operand Redundant Adders on FPGAs
METHUKU RAMU

1
, G. DEVENDHAR

2

1
PG Scholar, TRRITS, Hyderabad, TS, India, E-mail: methukuramu@gmail.com.

2
Assistant Professor, TRRITS, Hyderabad, TS, India.

Abstract: Although redundant addition is widely used to design parallel multi operand adders for ASIC implementations, the

use of redundant adders on Field Programmable Gate Arrays (FPGAs) has generally been avoided. The main reasons are the

efficient implementation of carry propagate adders (CPAs) on these devices (due to their specialized carry-chain resources) as

well as the area overhead of the redundant adders when they are implemented on FPGAs. This paper presents different

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They present a fast critical path,

independent of bit width, with practically no area overhead compared to CPA trees. Along with the classic carry-save

compressor tree, we present a novel linear array structure, which efficiently uses the fast carry-chain resources. This approach is

defined in a parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or vendor. A

detailed study is provided for a wide range of bit widths and large number of operands. Compared to binary and ternary CPA

trees, increases speedups for 16-bit width.

Keywords: Modelsim 6.4b, Xilinx ISE 10.1LanguagesVerilog HDL.

I. INTRODUCTION

 As the scale of integration keeps growing, more and

more sophisticated signal processing systems are being

implemented on a VLSI chip. These signal processing

applications not only demand great computation capacity

but also consume considerable amount of energy. While

performance and Area remain to be the two major design

tolls, power consumption has become a critical concern in

today‘s VLSI system design[1]. The need for low-power

VLSI system arises from two main forces. First, with the

steady growth of operating frequency and processing

capacity per chip, large currents have to be delivered and the

heat due to large power consumption must be removed by

proper cooling techniques. Second, battery life in portable

electronic devices is limited. Low power design directly

leads to prolonged operation time in these portable devices.

Addition usually impacts widely the overall performance of

digital systems and a crucial arithmetic function. In

electronic applications adders are most widely used.

Applications where these are used are multipliers, DSP to

execute various algorithms like FFT, FIR and IIR. Wherever

concept of multiplication comes adders come in to the

picture. As we know millions of instructions per second are

performed in microprocessors.

 So, speed of operation is the most important constraint to

be considered while designing multipliers. Due to device

portability miniaturization of device should be high and

power consumption should be low. Devices like Mobile,

Laptops etc. require more battery backup. So, a VLSI

designer has to optimize these three parameters in a design.

These constraints are very difficult to achieve so depending

on demand or application some compromise between

constraints has to be made. Ripple carry adders exhibits the

most compact design but the slowest in speed. Whereas

carry look ahead is the fastest one but consumes more area.

Carry select adders act as a compromise between the two

adders. In 2002, a new concept of hybrid adders is presented

to speed up addition process by Wang et al. that gives

hybrid carry look-ahead/carry select adders design. In 2008,

low power multipliers based on new hybrid full adders is

presented.

II. NEED FOR LOW POWER DESIGN

 The design of portable devices requires consideration for

peak power consumption to ensure reliability and proper

operation. However, the time averaged power is often more

critical as it is linearly related to the battery life. There are

four sources of power dissipation in digital CMOS circuits:

switching power, short-circuit power, leakage power and

static power. The following equation describes these four

components of power

 (1)

A. Low Voltage
 Power consumption is linearly proportional to voltage

swing (Vs) and supply voltage (Vdd) as indicated in Eq.

(2.5). For most CMOS logic families, the swing is typically

rail-to-rail. Hence, power consumption is also said to be

proportional to the square of the supply voltage, Vdd.

mailto:methukuramu@gmail.com

METHUKU RAMU, G. DEVENDHAR

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.04, February-2015, Pages: 0625-0628

Therefore, lowering the Vdd is an efficient approach to

reduce both energy and power, presuming that the signal

voltage swing can be freely chosen. This is, however, at the

expense of the delay of circuits. The delay, td, can be shown

to be proportional to. The exponent is between 1 and 2. It

tends to be closer to 1 for MOS transistors that are in deep

sub-micrometer region, where carrier velocity saturation

may occur. increases toward 2 for longer channel

transistors. The current technology trends are to reduce

feature size and lower supply voltage. Lowering Vdd leads to

increased circuit delays and therefore lower functional

throughput. Smaller feature size, however, reduces gate

delay, as it is inversely proportional to the square of the

effective channel length of the devices. In addition, thinner

gate oxides impose voltage limitation for reliability reasons.

Hence, the supply voltage must be lowered for smaller

geometries. The net effect is that circuit performance

improves as CMOS technologies scale down, despite of the

Vdd reduction. Therefore, the new technology has made it

possible to fulfill the contradicting requirements of low-

power and high throughput.

III. EXISTING SYSTEM

 In this paper, we study the efficient implementation of

multioperand redundant compressor trees in modern FPGAs

by using their fast carry resources. Our approaches strongly

reduce delay and they generally present no area overhead

compared to a CPA tree. Moreover, they could be defined at

a high level based on an array of standard CPAs. As a

consequence, they are compatible with any FPGA family or

brand, and any improvement in the CPA system of future

FPGA families would also benefit from them. Furthermore,

due to its simple structure, it is easy to design a parametric

HDL core, which allows synthesizing a compressor tree for

any number of operands of any bit width. Compared to

previous approaches, our design presents better

performance, is easier to implement, and offers direct

portability.

IV. PROPOSED SYSTEM

 In this section, we present different approaches to

efficiently map CS compressor trees on FPGA devices. In

addition, approximate area and delay analysis are conducted

for the general case. Let us consider a generic compressor

tree of Nop input operands with N bit width each. We also

assume the same bit width for input and output operands.

Thus, input operands should have previously been zero or

sign extended to guarantee that no overflow occurs. A

detailed analysis of the number of leading guard bits

required for multi operand CS addition is provided.

Applications:

 Digital signal processors.

 Microprocessors.

 Controllers.

Objective: The area overhead of the redundant adders when

they are implemented on FPGAs Present a fast critical path,

independent of bit width, with practically no area overhead

compared to CPA trees.

A. Deign Implementation

 The classic design of a multi-operand CS compressor tree

attempts to reduce the number of levels in its structure. The

3:2 counter or the 4:2 compressor are the most widely

known building blocks to implement it. We select a 4:2

compressor as the basic building block, because it could be

efficiently implemented on Xilinx FPGAs. The implement-

tation of a generic CS compressor tree requires [Nop/2]-1,

4:2 compressors (because each one eliminates two signals),

whereas a carry-propagate tree uses. In the previous

approach, specialized carry resources are only used in the

design of a single 4:2 compressor, but these resources have

not been considered in the design of the whole compressor

tree structure. To optimize the use of the carry resources, we

propose a compressor tree structure similar to the classic

linear array of CSAs.

Fig.1.

 However, in our case, given the two output words of

each adder (sum-word and carry-word), only the carry-word

is connected from each CSA to the next, whereas the sum

words are connected to lower levels of the array. Fig. 1

shows an example for a 9:2 compressor tree designed using

the proposed linear structure, where all lines are N bit width

buses, and carry signal are correctly shifted. For the CSA,

we have to distinguish between the regular inputs (A and B)

and the carry input (Ci in the figure), whereas the dashed

line between the carry input and output represents the fast

carry resources. With the exception of the first CSA, where

Ci is used to introduce an input operand, on each CSA Ci is

connected to the carry output (Co) of the previous CSA, as

shown in Fig.1. Thus, the whole carry-chain is preserved

from the input to the output of the compressor tree (from I0

to Cf). First, the two regular inputs on each CSA are used to

add all the input operands (Ii). When all the input operands

have been introduced in the array, the partial sum-words (Si)

previously generated are then added in order (i.e., the first

generated partial sums are added first).

Multi Operand Redundant Adders on FPGAs

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.04, February-2015, Pages: 0625-0628

V. IMPLEMENTATION RESULTS AND

COMPARISON

 To measure the effectiveness of the designs presented in

this paper, we have developed two generic VHDL modules

implementing the proposed compressor tree structures:

First, the linear array implemented by using CPAs (binary

and ternary) and, second, the 4:2 compressor tree using the

design of the compressor presented in [28]. Both modules

provide the output result in CS format and allow the

selection of different parameters such as: The number of

operands (Nop), the number of bits per operand (N), and the

basic building blocks (i.e., binary or ternary adder) for the

linear array. For the purposes of comparison, similar

modules, which implement classic adder tree structures

based on binary CPAs and ternary CPAs, have also been

developed. All these modules were simulated using

Modelsim SE 6.3f and they were synthesized using Xilinx

ISE 9.2, targeting Spartan-3A, Virtex-4, and Virtex-5

devices. A generic ternary adder module was designed

following the recommendations of Xilinx [46], because this

adder is not automatically supported by ISE 9.2.

Furthermore, to investigate their portability, compressor

trees based onnternary CPAs were also synthesized to target

the Altera Stratix-II family. In this case, the ternary adders

are directlyinstantiated at a high level. We now summarize

the main results obtained in this study.

A. Results on FPGA Families with Support for Binary

CPAs

 For the sake of simplicity, of the two FPGA families

tested (Spartan-3A and Virtex-4), only the results

corresponding to the Virtex-4 family are presented, because

the results are very similar for both families. On these

FPGAs, the compressor trees based on ternary adders are

not efficiently implemented, and thus, we have only tested

the ones based on binary adders. For purposes of clarity, let

us denote as CPA tree the classic tree structure based on

CPAs, OUR array the proposed linear array structure based

on 3:2 CSAs, and 4:2 tree the classic tree structure based on

a 4:2 compressors. Regarding the area, Fig. 8 shows the

number of LUTs required by the different compressor tree

structures when Varying Nop from 4 to 128 operands, for

16- and 64-bit widths. With the exception of 4- and 5-

operand compressor trees, which we consider separately, the

area used for the three compressor trees is very similar and

varies linearly with the number of operands and the bit

width, as expected.

 Specifically, the area of CPA tree and OUR array is

practically identical, whereas the 4:2 tree requires a little

more area (up to 6 percent for a 16-bit width and up to 2

percent for a 64-bit width), due to the implementation of

boundary bits on the 4:2 CA. Let us now consider the cases

of four and five operands. The CPAs involved in the

implementation of OUR array are only 2- and 3-bit width

for all operand sizes. Given this small size, the synthesis

tool implements these CPAs by exclusively using LUTs,

and not the specialized carry-chain, because this produces

faster circuits. As a consequence, there is an increase in area

for these particular cases (as shown in Fig. 8), which could

be eliminated by manually designing low-level CPAs or by

changing the synthesis tool. On the other hand, this faster

CPA implementation leads to more significant speedups for

these cases, as shown in the following.

Fig.2.

Fig.3.

 Regarding speed, Fig. 9 shows the speedup achieved

when using OUR array instead of CPA tree, for different

numbers of operands and varying the number of bits

from16- to 96-bit width. As can be seen, OUR array is

always faster than CPA tree, and the speedup practically

grow linearly in relation to number of bits. This is due to the

linear dependency of the delay on the CPAs, whereas the

delay remains constant for CSAs. Thus, although the

speedup achieved for 16-bit width is moderate, i.e., 12 to 50

percent faster (in the range of values selected for Nop and

excluding4- and 5-operand compressor trees), for 64-bit

width the speedup ranges from 44 to 104 percent faster. As

mentioned above, 4- and 5-operand compressor trees

achieve high speedup due to the small CPAs required. The

speedup achieved is very dependent on the number of

operands Nop. On the one hand, the growth of the speedup

METHUKU RAMU, G. DEVENDHAR

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.04, February-2015, Pages: 0625-0628

in relation to N (i.e., the slope) increases when Nop

decreases. On the other hand, the starting point of the

speedup line generally decreases when Nop increases,

although it presents a strong increase for certain values of

Nop. For this reason, and due to compressing the maximum

amount of information while keeping the image simple, we

have used values of Nop, which can be used as bounds of

monotonic intervals. In this way, for values of Nop between

five and eight operands, the line of the speedup is between

these bound lines; for values of Nop between 9 and16

operands, the line is between these bound lines, and soon.

 In addition, inside these ranges, and for a fixed number

of bits, the speedup always decreases when the number of

operands increases. Fig. 10 represents the delay changes in

relation Nop from 4 to 128 operands for N equal to 16 and

64 bits. For all cases, OUR array is the fastest solution,

whereas CPA tree is faster than 4:2 tree when N is 16

(except for Nop lower than 9); we obtain the opposite result

when N is 64 bits. The graphs corresponding to CPA tree

and 4:2 tree are arranged in steps. They present an almost

imperceptible growth in delay when Nop increases, but a

very high growth occurs when Nop is a power of two. This

behavior is due to the introduction of a new level of adders

at these points. Nevertheless, the behavior of OUR array is

smoother because the delay of the proposed structure

depends on both the number of levels and the number of

adders on each level (see Section 3.2). This figure makes

clear the behavior shown in Fig. 9. Similar behavior in

relation to Nop is observed when comparing OUR array

with 4:2 tree. However, in this case, the speedup achieved

is practically independent of the number of bits N.

 We should also note that when the bit width N is very

low compared to Nop, the maximum delay of OUR array is

limited due to the effect of the ending CPAs, as stated in

Section 3.3. For this reason, in Fig. 10, the delay of OUR

array for more than 64 operands is smaller for 16-bit width

see Fig. 10a) than for 64-bit width (see Fig. 10b). Table 1

presents the bounds and the average of the speedups

obtained by using OUR array or 4:2 tree instead of CPA

tree, for different ranges of Nop. The OUR array approach

is clearly superior to the classic 4:2 tree, and it could

achieve strongly reduced delays, even for short bit widths.

VI. CONCLUSION

 Efficiently implementing CS compressor trees on FPGA,

in terms of area and speed, is made possible by using the

specialized carry-chains of these devices in a novel way.

Similar to what happens when using ASIC technology, the

proposed CS linear array compressor trees lead to marked

improvements in speed compared to CPA approaches and,

in general, with no additional hardware cost. Furthermore,

the proposed high-level definition of CSA arrays based on

CPAs facilitates ease-of-use and portability, even in relation

to future FPGA architectures, because CPAs will probably

remain a key element in the next generations of FPGA. We

have compared our architectures, implemented on different

FPGA families, to several designs and have provided a

qualitative and quantitative study of the benefits of our

proposals.

VII. REFERENCES

[1] B. Cope, P. Cheung, W. Luk, and L. Howes,

―Performance Comparison of Graphics Processors to

Reconfigurable Logic: A Case Study,‖IEEE Trans.

Computers, vol. 59, no. 4, pp. 433-448, Apr. 2010. [2] S.

Dikmese, A. Kavak, K. Kucuk, S. Sahin, A. Tangel, and H.

Dincer, ―Digital Signal Processor against Field

Programmable Gate Array Implementations of Space-Code

Correlator Beamformer for Smart Antennas, ‖IET

Microwaves, Antennas Propagation, vol. 4, no. 5,pp. 593-

599, May 2010. [3] S. Roy and P. Banerjee, ―An

Algorithm for Trading off Quantization Error with

Hardware Resources for MATLAB-based FPGA Design,

‖IEEE Trans. Computers, vol. 54, no. 7, pp. 886-896, July

2005. [4] F. Schneider, A. Agarwal, Y.M. Yoo, T. Fukuoka,

and Y. Kim,―A Fully Programmable Computing

Architecture for Medical Ultrasound Machines, ‖IEEE

Trans. Information Technology in Biomedicine, vol. 14, no.

2, pp. 538-540, Mar. 2010. [5] J. Hill, ―The Soft-Core

Discrete-Time Signal Processor Peripheral[Applications

Corner],‖ IEEE Signal Processing Magazine, vol. 26,no. 2,

pp. 112-115, Mar. 2009. [6] J.S. Kim, L. Deng, P.

Mangalagiri, K. Irick, K. Sobti, M. Kandemir,V. Narayanan,

C. Chakrabarti, N. Pitsianis, and X. Sun, ―An Automated

Framework for Accelerating Numerical Algorithmson

Reconfigurable Platforms Using Algorithmic/Architectural

Optimization, ‖IEEE Trans. Computers, vol. 58, no. 12, pp.

1654-1667, Dec. 2009. [7] H. Lange and A. Koch,

―Architectures and Execution Models for

Hardware/Software Compilation and their System-

LevelRealization, ‖IEEE Trans. Computers, vol. 59, no. 10,

pp. 1363-1377, Oct. 2010. [8] L. Zhuo and V. Prasanna,

―High-Performance Designs for Linear Algebra Operations

on Reconfigurable Hardware, ‖IEEETrans. Computers,vol.

57, no. 8, pp. 1057-1071, Aug. 2008.

