

www.ijsetr.com

ISSN 2319-8885

Vol.04,Issue.57,

December-2015,

Pages:12111-12115

 Copyright @ 2015 IJSETR. All rights reserved.

A Review of Network Intrusion Detection and Countermeasure Selection in

Virtual Network Systems
B. KISHAN NAIK

1
, M.A. MUNEER

2

1
PG Scholar, J.B. Institute of Engineering and Technology, Hyderabad, India,

Email: Nayak.kishan524@gmail.com.
2
Assistant Professor, J.B. Institute of Engineering and Technology, Hyderabad, India.

Abstract: Nowadays every industry and even some parts of the public sector are using cloud computing, either as a provider or as

a consumer. But there are many security issues present in cloud computing environment. There are many possible attacks in cloud

computing environment, one such attack is the DoS or its version DDoS attack. Generally, attackers can explore vulnerabilities of

a cloud system and compromise virtual machines to deploy further large-scale Distributed Denial-of-Service (DDoS). DDoS

attacks usually involve early stage actions such as low frequency vulnerability scanning, multi-step exploitation and

compromising identified vulnerable virtual machines as zombies and finally DDoS attacks using the compromised zombies.

Inside the cloud system, especially the Infrastructure-as-a-Service clouds, the detection of zombie exploration attacks is very

difficult. To prevent vulnerable virtual machines from being compromised in the cloud, we propose a multi-phase distributed

vulnerability detection, measurement, and countermeasure selection mechanism called NICE, which is built on attack graph based

systematic models and reconfigurable virtual network-based countermeasures. This paper provides a short Reveiw on the

techniques to network intrusion detection and countermeasure selection in virtual network system.

Keywords: Intrusion Detection, Network Security, Cloud Computing, Attack Graph, Zombie Detection.

I. INTRODUCTION

 A recent Cloud Security Alliance (CSA) survey shows that

among all security problems, abuse and nefarious use of cloud

computing is considered as the top security threat, in which

attackers can make use of vulnerabilities in clouds and utilize

cloud system resources to make attacks. In traditional data

centers, where system administrators have full control over

the host machines, vulnerabilities can be detected and fixed

by the system administrator in a centralized manner.

However, fixing known security holes in cloud data centers,

where cloud users usually have the rights to control software

installed on their managed VMs, may not work efficiently and

can violate the Service Level Agreement (SLA). Furthermore,

cloud users can install vulnerable software on their VMs,

which basically contributes to loopholes in cloud security.

The challenge is to set up an effective vulnerability/attack

detection and response system for accurately identifying

attacks and minimizing the impact of security breach to cloud

users. In a cloud environment where the infrastructure is

shared by potentially millions of users, abuse and illegal use

of the shared infrastructure benefits attackers to make use of

vulnerabilities of the cloud and use its resource to deploy

attacks in more efficient ways. Such attacks are very effective

in the cloud environment since cloud users usually share

computing resources, e.g. being interconnected through the

same switch , file systems and sharing with the same data

storage, even with potential attackers. The similar setup for

Virtual Machines in the cloud, e.g. VM OS, virtualization

techniques, installed vulnerable software etc. attracts attackers

to compromise multiple VMs.

II. LITERATURE SURVEY
 In 2010. H. Takabi, J.B. Joshi, and G. Ahn explained the

security and privacy challenges in cloud computing

environment [1]. Cloud computing has generated significant

interest in both the academy and industry, but it is yet an

evolving paradigm. Essentially, it aims to combine the

economic utility model with the evolutionary development of

lots of existing approaches and computing technologies,

including services, distributed applications and information

infrastructures consisting of pools of networks, computers and

storage resources. Many doubt exists in IT communities about

how a cloud differs from existing models and how these

differences affect its adoption. Some see a cloud as a new

technical revolution, while others consider it a natural

evolution of technology, economy and culture. 1)However,

cloud computing is an important paradigm, with the potential

to significantly reduce costs through optimization and

increased operating and economic efficiencies. 2)

Furthermore, cloud computing could significantly enhance

collaboration, agility, and scale, thus allowing a truly global

computing model over the Internet infrastructure. However,

without proper security and privacy solutions designed for

clouds, this computing paradigm could become a big failure,

B. KISHAN NAIK, M.A. MUNEER

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.57, December-2015, Pages: 12111-12115

many number of surveys of potential cloud adopters indicate

that security and privacy is the primary concern constraining

its adoption. 3)This article explains the issues of cloud

computing that explains security and privacy challenges in

clouds 4)This article discuss various approaches to address

these challenges and explore the future work needed to

provide a trustworthy cloud computing environment.

 In 2012 B. Joshi, A. Vijayan, and B. Joshi proposed a

method for Securing cloud computing environment against

DDoS attacks. In this paper they explained Cloud Computing

is the newly emerged technology of Distributed Computing

System. Cloud Computing user concentrate on API security &

provide services to its consumers in virtual environment into

three layers namely, Software as a service, Infrastructure as a

service and Platform as a service with the help of web

services .It provides service facilities to its consumers on

demand. These service provided can simply invites attacker to

attack by Saas , Iaas and Paas. Since the resources are

gathered at one place in data centers in cloud computing, the

DDOS attacks such as HTTP & XML in this environment is

dangerous & provides harmful effects and also all consumers

will be affected at the same time. These attacks can be

resolved & detected by a proposed methodology. In this

methodology, this problem can be overcome by using

proposed system. The different types of vulnerabilities are

detected in proposed system. The SOAP request form the

communication between the client and the service provider.

Through the Service Oriented Trace back Architecture the

SOAP request is send to the cloud. In this architecture service

oriented trace back mark is present which contain proxy

within it the proxy that marks the incoming packets with

source message identification to identify the real client. Then

the SOAP message is travelled via XDetector.

 The XDetectors used to monitors and filters the DDoS

attacks such as HTTP and XML DDoS attack and finally the

filtered real client message is transferred to the cloud service

provider and the corresponding services are given to the client

in secured method. The paper [3] focuses on the detection of

the compromised machines in a network that are used for

sending spam messages, which are commonly known as spam

zombies. Given that spamming provides a critical economic

incentive for the controllers of the compromised machines to

recruit these machines, it has been seen that many

compromised machines are involved in spamming. A number

of latest research efforts have studied the aggregate global

characteristics of spamming botnets (networks of

compromised machines involved in spamming) such as the

size of bonnets and the spamming patterns of botnets, based

on the sampled spam messages received at a large email

service provider. In 2007 G. Gu, P. Porras, V. Yegneswaran ,

M. Fong, and W. Lee proposed a method for Detecting

Malware Infection through IDS-driven Dialog Correlation.

The paper [4]focus on a new kind of network perimeter

monitoring strategy, which concentrates on recognizing the

infection and coordination dialog that occurs during a

successful malware infection.

 BotHunter is application designed to track the twoway

communication flows among internal assets and external

entities, developing an evidence trail of data interchange that

match a state-based infection sequence model. BotHunter

made up of a correlation engine that is driven by three

malware-focused network packet sensors, each charged with

detecting stages of the malware infection process, including

exploit usage, inbound scanning, egg downloading, outbound

bot coordination dialog and outbound attack propagation. The

BotHunter correlator then bind together the dialog trail of

inbound intrusion alarms with those outbound communication

patterns that are highly indicative of successful local host

infection. When a sequence of evidence is found to match

BotHunter’s infection dialog model, the overall report is

produced to capture all the relevant events and event sources

that played a role during the infection process. We refer to

this strategy of matching the dialog flows between internal

assets and the broader Internet as dialog-based correlation,

and against this strategy to other intrusion detection and alert

correlation methods. They presented experimental results

using BotHunter in both virtual and live testing environments.

BotHunter is made available both for operational use and to

help stimulate research in understanding the life cycle of

malware infections.

 In 2012 Z. Duan, P. Chen, F. Sanchez, Y. Dong, M.

Stephenson, and J.Barker proposed a method for Detection of

Spam Zombies by Monitoring Outgoing Messages[5] In this

paper we have seen Compromised machines are one of the

key security threats on the Internet; they are often used to

launch various security attacks such as spamming and

spreading malware, identity theft and DDoS. Given that

spamming allows a key economic incentive for attackers to

recruit the large number of compromised machines, we are

concentrating on the detection of the compromised machines

in a network that are involved in the spamming activities,

generally known as spam zombies. An effective spam zombie

detection system named SPOT is developed by monitoring

outgoing messages of a network. SPOT is developed based on

a powerful statistical tool named Sequential Probability Ratio

Test, which has bounded false negative error and false

positive rates. The evaluation study based on email trace

collected in a large campus network show that SPOT is an

effective and efficient system in automatically detecting

compromised machines in a network. In addition, the

performance of SPOT is compared with two other spam

zombie detection algorithms based on the number and

percentage of spam messages originated or forwarded by

internal machines, and show that SPOT performs good than

these two detection algorithms.

 In 2005, X.Ou,S.Govindavajhala, and A.W. Appel proposed

a logic based security analyzer[6]. To determine the security

impact software vulnerabilities have on a particular network,

one must consider interactions between multiple network

elements. For a vulnerability analysis an application is useful

in practice, two features are important. First, the model used

in the analysis must be able to automatically integrate formal

A Review of Network Intrusion Detection and Countermeasure Selection in Virtual Network Systems

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.57, December-2015, Pages: 12111-12115

vulnerability specifications from the bug-reporting

community. Second, the analysis must be able to scale to

networks with thousands of machines. To achieve these two

goals by presenting MulVAL, an end-to-end framework and

reasoning system that conducts multistage, multihost,

vulnerability analysis on a network. MulVAL adopts Data log

as the modeling language for the elements in the analysis

(Configuration description and bug specification, Operating

system permission, and privilege model and reasoning rules

etc.). We easily leverage existing vulnerability-database and

scanning tools by expressing their output in Data log and

feeding it to our MulVAL reasoning engine. Once the

information is gathered, the analysis can be done in seconds

for networks with thousands of machines.

III. EXISTING SYSTEM
 In traditional data centers, where system administrators

have full control over the host machines, vulnerabilities can

be detected and fixed by the system administrator in a

centralized manner. However, patching known security holes

in cloud data centers, where cloud users usually have the

rights to control software installed on their managed VMs,

may not work efficiently and can violate the Service Level

Agreement (SLA).

A. Detecting Malicious Behavior

 Duan et al. focused on the detection of compromised

machines that have been recruited to serve as spam

zombies. Their approach, SPOT, is based on sequentially

scanning outgoing messages while employing a statistical

method Sequential Probability Ratio Test (SPRT), to

quickly determine whether or not a host has been

compromised.

 BotHunter detected compromised machines based on the

fact that a thorough malware infection process has a

number of well defined stages that allow correlating the

intrusion alarms triggered by inbound traffic with

resulting outgoing communication patterns.

 BotSniffer exploited uniform spatial-temporal behavior

characteristics of compromised machines to detect

zombies by grouping flows according to server

connections and searching for similar behavior in the

flow. An attack graph is able to represent a series of

exploits, called atomic attacks, that lead to an adverse

state, for example a state where an attacker has obtained

administrative access to a machine. There are many

automation tools to build attack graph.

B. Binary Decision Diagrams(BDDs)

 O. Sheyner et al. proposed a technique based on a modified

symbolic model checking NuSMV and Binary Decision

Diagrams (BDDs) to construct attack graph. Drawbacks Their

model can generate all possible attack paths, however, the

scalability is a big problem for this solution.

C. Intrusion Detection System

 IDS and firewall are widely used to monitor and detect

suspicious events in the network. Drawbacks the false alarms

and the large volume of raw alerts from IDS are two major

problems for any Intrusion Detection system

implementations. Many attack graph based alert correlation

techniques have been proposed recently. L. Wang et al.

devised an in-memory structure, called queue graph (QG), to

trace alerts matching each exploit in the attack graph.

 Drawbacks The implicit correlations in this design make it

difficult to use the correlated alerts in the graph for analysis of

similar attack scenarios. Roschke et al. proposed a modified

attackgraph-based correlation algorithm to create explicit

correlations only by matching alerts to specific exploitation

nodes in the attack graph with multiple mapping functions,

and devised an alert dependencies graph (DG) to group

correlated alerts with multiple correlation criteria.

D. Attack Countermeasure Tree
 Roy et al. proposed an attack countermeasure tree (ACT) to

consider attacks and countermeasures together in an attack

tree structure. They devised several objective functions based

on greedy and branch and bound techniques to minimize the

number of countermeasure, reduce investment cost, and

maximize the benefit from implementing a certain

countermeasure set. In their design, each countermeasure

optimization problem could be solved with and without

probability assignments to the model. Drawbacks However,

their solution focuses on a static attack scenario and

predefined countermeasure for each attack. N. Poolsappasit et

al. proposed a Bayesian attack graph (BAG) to address

dynamic security risk management problem and applied a

genetic algorithm to solve countermeasure optimization

problem.

IV. PROPOSED SYSTEM

1. NICE (Network Intrusion detection and Countermeasure

sElection in virtual network systems) is proposed to

establish a defense-in-depth intrusion detection

framework.

2. For better attack detection, NICE incorporates attack

graph analytical procedures into the intrusion detection

processes.

3. The design of NICE does not intend to improve any of

the existing intrusion detection algorithms; indeed, NICE

makes use of a reconfigurable virtual networking

approach to detect and counter the attempts to

compromise VMs, thus preventing zombie Virtual

Machines.

4. Deploy a lightweight mirroring-based network intrusion

detection agent (NICE-A) on each cloud server to capture

and analyze cloud traffic. A NICE-A periodically

inspects the virtual system vulnerabilities within a cloud

server to establish Scenario Attack Graph (SAGs), and

then based on the severity of identified vulnerability

towards the collaborative attack goals, NICE will decide

whether or not to put a VM in network inspection state.

5. Once a Virtual Machine enters inspection state, Deep

Packet Inspection is applied and/or virtual network

reconfigurations can be deployed to the inspecting

Virtual Machine to make the potential attack behaviors

prominen)By using software switching techniques,

NICE constructs a mirroring-based traffic capturing

B. KISHAN NAIK, M.A. MUNEER

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.57, December-2015, Pages: 12111-12115

framework to minimize the interference on users’ traffic

compared to traditional bump-in-the-wire (i.e., proxy-

based) IDS/IPS.

6. NICE enables the cloud to establish inspection and

quarantine modes for suspicious VMs according to their

current vulnerability state in the current SAG. 8)Based on

the collective behavior of VMs in the SAG, NICE can

decide appropriate measures, for example Deep packet

Inspection or traffic filtering, on the suspicious VMs.

Using this method, NICE does not need to block traffic

flows of a suspicious VM in its early attack stage.

A. Advantages
1. NICE significantly advances the current network IDS/IPS

solutions by using programmable virtual networking

approach that allows the system to construct a dynamic

reconfigurable IDS system.

2. NICE, a new multi-phase distributed network intrusion

detection and prevention framework in a virtual

networking environment that captures and inspects

suspicious cloud traffic without interrupting users’

applications and cloud services.

3. NICE incorporates a software switching solution to

quarantine and inspect suspicious VMs for further

investigation and protection. Through programmable

network approaches, NICE can improve the attack

detection probability and improve the resiliency to VM

exploitation attack without interrupting existing normal

cloud services.

4. NICE employs a novel attack graph approach for attack

detection and prevention by correlating attack behavior

and also suggests effective countermeasures.

5. NICE optimizes the implementation on cloud servers to

minimize resource consumption. NICE study shows that

NICE consumes less computational overhead compared

to proxy-based network intrusion detection solutions.

B. NICE System Architecture
 The proposed system is designed to work in a cloud virtual

networking environment. It consists of a cluster of cloud

servers and their interconnections. We assume that the latest

virtualization solutions are deployed on cloud servers. The

virtual environment can be classified as Privilege Domains,

e.g., the dom0 of XEN Servers and the host domain of KVM,

and Unprivileged Domains, e.g., VMs. Cloud servers are

connected through programmable networking switches, such

as physical Open Flow Switches (and software-based Open v

Switches deployed in the Privilege Domains. In this work, we

refer Open Flow Switches and Open V Switches and their

controllers as to the Software Defined Network (SDN). The

deployed security mechanism focuses on providing a

nonintrusive approach to prevent attackers from exploring

vulnerable VMs and use them as a stepping stone for further

attacks.

C. System Components In this section, we explain each

component of NICE

 Nice-A the NICE-A is a Network-based Intrusion

Detection System (NIDS) agent installed in each cloud

server. It inspects the traffic going through the bridges

that control all the traffic among VMs and in/out from the

physical cloud servers. It will sniff a mirroring port on

each virtual bridge in the Open v Switch. Each bridge

creates an isolated subnet in the virtual network and

connects to all related VMs. The traffic generated from

the Virtual Machines on the mirrored Software Bridge

will be mirrored to a specific port on a specific bridge

using SPAN ERSPAN or RSPAN methods. It’s more

efficient to scan the traffic in cloud server since all traffic

in the cloud server needs go through it; however our

design is independent to the installed VM. The false

alarm rate could be decreased through our architecture

design.

 VM Profiling Virtual machines in the cloud can be

profiled to get precise information about their state, open

ports, services running etc. One major factor that counts

towards a VM profile is its connectivity with other

Virtual Machines. Also required is the knowledge of

services running on a VM so as to verify the authenticity

of alerts relating to that VM. An attacker can use port

scanning program to perform an intense examination of

the network to look for open ports on any Virtual

Machine. So information about any open ports on a VM

and the history of opened ports plays a significant role in

determining how vulnerable the Virtual Machines is. All

these factors will form the Virtual Machine profile. VM

profiles are maintained in a database and contain

comprehensive information about vulnerabilities, traffic

and alert.

 Attack Analyzer The major functions of NICE system are

performed by attack analyzer, which consist of

procedures such as attack graph creation and update, alert

correlation and countermeasure selection. The process of

constructing and using the scenario Attack (SA) consists

of three phases: information gathering, attack graph

construction, and potential exploit path analysis. With

this information, attack paths can be modeled using SAG.

Each node in the attack graph represents an exploit by the

attacker. Each path from an initial node to a goal node

represents a successful attack.

 Network Controller The network controller is a key

component to support the programmable networking

capability to realize the virtual network reconfiguration.

In NICE, we combined the control functions for both

Open V Switch and Open Flow Switch into the network

controller that allows the cloud system to set

security/filtering rulesin an integrated and comprehensive

manner. The network Controller is responsible for

collecting network information of current Open Flow

network and provides input to the attack analyzer to

construct attack graphs. In NICE, the network control

also consults with the attack analyzer for the flow access

control by setting up the filtering rules on the

corresponding Open V Switch and Open Flow Switch.

Network controller is also responsible for applying the

countermeasure from attack analyzer. Based on Virtual

Machines Security Index and severity of an alert,

A Review of Network Intrusion Detection and Countermeasure Selection in Virtual Network Systems

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.57, December-2015, Pages: 12111-12115

countermeasures are selected by NICE and executed by

the network controller.

V. CONCLUSION

 This paper provides a Review on Network Intrusion

detection and Countermeasure selection and the related

security concepts. NICE, which is proposed to detect and

mitigate collaborative attacks in the cloud virtual networking

environment. NICE uses the attack graph model to conduct

attack detection and prediction. The proposed solution

investigates how to use the programmability of software

switches based solutions to improve the detection accuracy

and defeat victim exploitation phases of collaborative attacks.

The system performance evaluation indicates the feasibility of

NICE and shows that the proposed solution can significantly

reduce the risk of the cloud system from being exploited and

misused by internal and external attackers.

VI. REFERENCES
[1]Cloud Security Alliance, “Top threats to cloud computing

1.0,”https://cloudsecurityalliance.org/topthreats

/csathreats.v1.0.pdf, March 2010.

[2] A. Vijayan and B. Joshi, “Securing Cloud Computing

Environment against DDoS Attacks,” Proceedings IEEE

International Conference Computer Comm. and Informatics,

Jan. 2012.

 [3]J.B. Joshi, H. Takabi and G. Ahn, “Security and Privacy

Challenges in Cloud Computing Environments,” IEEE

Security and Privacy, vol. 8, no. 6, pp. Dec. 2010.

 [4] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson

and J. Barker, “Detecting Spam Zombies by Monitoring

Outgoing Messages,” IEEE Trans. Dependable and Secure

Computing, Apr. 2012.

 [5] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,

“BotHunter: Detecting Malware Infection through IDSdriven

Dialog Correlation,” Proc. 16th USENIX Security Symp. (SS

’07), pp. 12:1-12:16, Aug. 2007.

[6] X. Ou, S. Govindavajhala, and A.W. Appel, “MulVAL: A

Logic-Based Network Security Analyzer,” Proc. 14th

USENIX Security Symp., pp. 113-128, 2005.

