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Abstract: The main objective of this project is to design a recursive algorithm to obtain an orthogonal approximation of the 

DCT with half optimized complexity. This project presents a generalized recursive algorithm to obtain an orthogonal 

approximation of DCT where a pair of DCTs of length N/2 is used to derive approximate DCT of length N at the cost of N 

additions for input preprocessing. By using symmetries of basis vectors and perform recursive sparse matrix decomposition for 

deriving the proposed approximation algorithm. The proposed algorithm is highly scalable for hardware as well as software 

implementation of DCT of larger lengths, and they can be derived using the approximation of existing 8-point DCT to obtain 

approximate DCT of any power of two length, N>8.  Further, this project is enhanced by using Vedic sutras. A technique of 

binary digits, decimal number multiplication is performed, and it is different from the conventional method of multiplication like 

Add and Shift. It presents a systematic methodology for high speed and area efficient Vedic Multiplier based on Vedic 

Mathematics. The multiplier architecture is based on the URDHVA–TIRYAGBYAM sutra of Ancient Indian Vedic 

Mathematics. 
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I. INTRODUCTION 

      The goal of scalable compression methods is to generate a 

bit string that can be truncated at any desired point, while  

maintaining the best possible quality (e.g. peak signal-tonoise 

ratio, PSNR) for the selected bit rate. The availability of such 

a scalable bit string considerably simplifies the system design 

by practically eliminating the need for a buffer control 

method when fitting the data to a certain given bit rate or 

memory size. In particular, the same single bit string 

simultaneously serves different channels with different bit 

rates, without the need to re-encode the original data. Thus, 

real-time adaptation to varying channel capacities (with 

application to the Internet or wireless communication 

channels) is very much simplified. The disadvantage of the 

well known scalable methods of [1, 2] is their complexity. It 

turns out, however, that complexity  reductions are possible 

without major losses in performance. For example, the 

methods of [3, 4, 5] are based on the DCT instead of the 

wavelet transform, which reduces the complexity of the 

transform at the cost of a PSNR reduction  of 0.6–1 dB [6]. A 

further complexity reduction for DCT-based scalable 

compression was achieved in [5], by not making use of trees 

(similarly, scalable wavelet transform coding without the use 

of trees was proposed in [7]). An integrated module of 

contemporary video/image processing applications is 

constituted by transforming coding: It relies on the basis that 

pixels in the picture provide a certain level of correlation with 

the neighboring pixels and adjacent pixels in consecutive 

video frames show very high correlation in a video 

transmission system. 

     Consequently, these correlations can be developed to 

approximate the value of a pixel from its individual 

neighbors. A transformation is, therefore, described to plot 

this spatial, i.e. correlated information into transformed i.e. 

uncorrelated coefficients. Obviously, the transformation 

should utilize the fact that the information content of an 

individual pixel is moderately small i.e. to a large extent 

visual contribution of a pixel can be estimated using its 

neighbors. The importance of this paper is to prepare a plan to 

fix a 8-point Discrete Cosine Transform (DCT) and Inverse 

DCT with the speed of processing by scaling and 

approximation of the co-efficient by choosing the proper 

method of selection of these coefficients. It could be 

completed by increasing of glided point esteem with contain 

the outline architecture is designed in Verilog Hardware 

Description Language code using Modelsim, Altera and 

XILINX ISE devices. The system is showing and combined 

using RTL (Register Transfer Level) reflection. In this novel, 

an 8 × 8 point DCT and IDCT DSP Processor is performed by 

using Loeffler factorization. The paper gives the data about 

how to abstain from coasting point by using the DCT/IDCT 

operations. In this model only 11 duplications are used for 

implantation. Here the executed configuration is used for the 

further developments. The pipelined design can likewise be 

added to DCT and IDCT. The displayed design of processor 

is combined with the several things which are used as a single 

processor for the number of applications.  The elements of N-

point DCT matrix are given by 
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                                                   (1) 

Where 0 ≤ i, j ≤ N-1, ϵ0 =0.707 and ϵi=1 for I > 0.the equation 

is referred to as exact DCT in order to distinguish it from 

approximated forms of DCT. For k ϵ [0,(N/2)-1] and i=2k, for 

any even value of N then equation becomes 

                          (2) 

Since ϵ2k =ϵk the equation can be written as  

                                  (3) 

     Hence, the cosine transforms kernel on the right-hand side 

corresponds to N/2 -point DCT. Therefore, the first N/2 

elements of even rows of the DCT matrix of size N × N 

corresponds to the N/2 -point DCT matrix. Accordingly, the 

recursive decomposition of CN can be performed. Using the 

even/odd symmetries of its row vectors, DCT matrix CN  can 

be represented by the following matrix product   

                                     (4) 

Where TN is a block sparse matrix expressed by   

                                                           (5) 

Where 0N/2 is the (N/2× N/2) zero matrixes. Block sub-matrix 

SN/2 consists of odd rows of the first N/2 columns of 2CN . 

Where MN
per

 is a permutation matrix expressed by 

                                        (6) 

Where 0
1,
N

2

 a row of N/2 is is zeros and PN−1,N/2
(i)

 is a matrix 

defined by its row vectors as    

              (7) 

Where IN
2

(i/2) is the (i/2)th row vector of the (N/2 × 

N/2) identity matrix. Finally, the last matrix  MN
add  is defined 

by 

                                                       (8) 

Where JN/2 is an (N/2 × N/2) matrix having all ones on the 

anti-diagonal and zeros elsewhere. 

      To decrease the computational complication of Discrete 

Cosine Transform, the computational cost of matrices offered 

is requisite to be measurable. Given that, it does not involve 

any calculation or logic operation, and requires 

accompaniments and subtractions, they make a payment very 

little to the whole arithmetic complexity and cannot be 

condensed more. So, for declining the computational 

complexity of N-point DCT, we necessitate to estimate TN in 

the equation. Let  and  denote the approximation matrices of 

CN/2 and SN/2, respectively. To find these approximated sub 

matrices we take the smallest size of the DCT matrix to 

terminate the approximation procedure to 8, because four-

point DCT and two-point DCT can be implemented with 

adders simply. Consequently, a good approximation of CN, 

where N is an integral power of two, for N ≥ 8, leads to 

proper approximations of C8 and S8. For an approximation of 

C8 we can choose the 8-point DCT. Since that presents the 

best exchange stuck between the number of necessary 

arithmetic operators and quality of the reconstructed image. 

 

II. C8 IMPLEMENTATION 

 
Fig.1.Signal Flow Graph (sfg) of (c8 ). 

     The basic computational block of algorithms for the 

existing DCT approximation, The block diagram of the 

computation of DCT based on C8 is shown in above fig.1, for 

a given input sequence {X (n)}, n ϵ [0, N-1]. The approximate 

DCCT coefficients are obtained by F= . X
T
.  Can be 

approximated by two units for the computation of  are used 

along with an input adder unit and output permutation unit. 

And computation of 32-point DCT could be obtained by 

combining a pair of 16-point DCTs with an input adder block 

and output permutation block. To assess the computational 

complexity of existing N-point approximate DCT, we need to 

determine the computational cost of matrices, the 

approximate 8-point DCT involves 22 additions. Since 

permutation matrix has no computational cost and addition 

matrix requires additions for N additions for N-point DCT, 

the overall arithmetic complexity of 16-point, 32-point, and 

64-point DCT approximations are 60, 152, and 368 additions, 

respectively. More generally, the arithmetic complexity of N-

point DCT is equal to N (log2 N-(1/4)) additions. Moreover, 

since the structures for the calculation of Discrete Cosine 

Transform of dissimilar lengths are normal and scalable, the 

calculation time for N-point DCT coefficients can be 

determined to be log2(N)TA ,where TA is the extra-time. The 

method requires the least number of augmentations, and does 
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not need any shift functions. Make a note of that shift process 

does not involve any combinational components, and need 

simply as rewiring during hardware execution. Other than it 

has oblique giving to the hardware complication because shift 

add operations direct to increase in bit-width which leads to 

higher hardware density of arithmetic units which go after the 

shift-add operation. Also, I note that all measured estimate 

methods involve extensively less computational complexity 

over that of the exact DCT algorithms.  

III. EXISTING RECONFIGURABLE ARCHITECTURE 

       Discrete Cosine Transform (DCT) of dissimilar lengths 

such as 32, 16 are needed to be used in video coding 

applications. So, a known Discrete Cosine Transform 

structural design have to be potentially reused for the DCT of 

altered lengths instead of using different designs for different 

lengths. I suggest here such reconfigurable DCT designs 

which could be reused for the calculation of DCT of different 

lengths. The reconfigurable structural design for the 

functioning of approximated 16-point DCT is shown in below 

Fig.2. 

     
Fig.2.Block diagram of approximation of DCT for n=16. 

      It consists of three computing units, that is 2 eight-point 

approximated Discrete Cosine Transform units and a sixteen-

point input adder unit that generates a(i) and b(i),I ϵ[1:7] . The 

input to the initial 8-point DCT approximation unit is fed 

through 8 MUXes that select either a(0), a(1), a(2) ,a(3) ,a(4) 

,a(5) a(6), a(7) or X(0),X(1),X(2),X(3),X(4), X(5),X(6),X(7) 

depending on whether it is used for 16-point DCT calculation 

or 8-point DCT calculation. Similarly, the input to the second 

8-point DCT unit is fed through 8 MUXes that select either 

b(0),b(1),b(2),b(3),b(4),b(5),b(6),b(7) or X(8),X(9),X(10), 

X(11),X(12),X(13), X(14) ,X(15), based on whether it is used 

for sixteen-point DCT calculation or eight-point DCT 

calculation. The unit uses 14 MUXes to select and re-order 

the output depending on the size of the selected DCT.sel16 is 

used as control input of the MUXes to select inputs and to 

perform permutation. Specifically, sel16=1 enables the 

computation of 16-point DCT and enables the computation of 

a pair of 8-point DCTs in parallel. Consequently, the 

architecture allows the calculation of a 16-point DCT or two 

8-point DCTs in parallel. A reconfigurable design for the 

computation of 32-, 16-, and 8-point DCTs is presented. 

 
Fig.3. Reconfigurable Architecture for DCT of lengths 

n=8 & 16. 

 

       It performs the computation of a 32-point Discrete Cosine 

Transform or 2 sixteen-point Discrete Cosine Transforms in 

parallel or 4 eight-point Discrete Cosine Transforms in 

parallel. The structural design is poised of 32-point input 

adder unit, 2 sixteen-point input adder units, and 4 eight-point 

DCT units. The reconfigurability is accomplished by 3 control 

blocks unruffled of 64 2:1 MUXes along with 30 3:1 MUXes 

as shown in Fig.3. The primary control block decides whether 

the Discrete Cosine Transform size is of 32 or lower. If, the 

selection of input data has ended for the 32-point Discrete 

Cosine Transform, or else, for the Discrete Cosine 

Transforms of lower lengths. The second control block 

decides whether the Discrete Cosine Transform size is higher 

than 8. 

 

IV. DCT USING VEDIC MULTIPLIER 

        The hardware, structural design of 2×2, 4x4 and 8x8 bit 

Vedic multi-player components are shown in the lower 

sections. At this point, “URDHVA-TIRYAGBHYAM” 

(perpendicularly and diagonally) sutra is used to suggest such 

design for the multiplication of two binary information. The 

attractiveness of Vedic multiplier is that here partial product 

generation and additions are done simultaneously. Therefore, 

it is well modified to equivalent processing. The attribute 

make it more beautiful for binary multiplications. This in turn 

decline, delay, which is the main inspiration following this 

work. A Vedic Multiplier for 2x2 bit Module, The process is 

explained below for two, 2 bit numbers  X and  Y  where  X  

=  a1a0  and  Y  =  b1b0.  Initially, the slightest significant 

bits are multiplied which gives the least significant bit of the 

ultimate product (vertical). Then, the Least Significant Bit of 

the multiplicand is multiplied with the next superior bit  of  

the  multiplier  and  added  to,  the  product  of  Least 

Significant Bit  of  multiplier and a next higher bit of the 

multiplicand (crosswise).  The sun produces second bit of the 

final product and the carry is further with the partial product 
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get hold of by multiplying the most significant bits to give the 

sum and carry. The sum is the third equivalent bit and carry 

becomes the fourth bit of the final product as shown in Fig.4.    

 
Fig.4. Block diagram 2×2 Vedic multiplier. 

         The  2X2  Vedic  multiplier  unit  is  realized  with  4 

input AND gates and 2 half-adders which is shown in  its  

block.  It  is  originate  that  the  hardware  structural design  

of  2x2  bit  Vedic  multiplier unit is  same  as  the  hardware  

architecture  of  2x2 the enhancemental  Array  Multiplier. 

Therefore, it is over and done with that multiplication of two  

bit  double  numbers  by  Vedic  sutra  does  not  ended  

important to effect  in  the enhancement  of  the multiplier’s 

effectiveness. Extremely state that the whole delay is only 

two-half adder delays, later than final bit products are 

produced, which is alike to Array multiplier. So we switch 

more than the implementation of 4x4 bit Vedic multiplier 

which uses the 2x2 bit multiplier as a fundamental building 

block. The identification method can be extensive for input 

bits 4 & 8. But for larger number of bits in input, little 

alteration is necessary. The 4x4 bit Vedic multiplier unit is 

designed by four 2x2 bit Vedic multiplier units. Let’s 

examine 4x4 calculations, say X= A3A2A A0 and Y= B3 B2 

B1 B0. The output line for the multiplication unit is - S7 S6 

S5 S4 S3 S2 S1 S0. Let’s split X and Y into two parts, say 

A3A2 & A1A0 for X and B3B2 & B1B0 for Y. With the 

basic unit of Vedic multiplication, taking 2 bits at a time and 

using 2 bit multiplier units, we can have the subsequent 

design for calculation as displayed in below fig.5. Model 

representation for 4x4 bit Vedic Multiplication has each block 

as shown top is 2x2 bit Vedic multiplier unit. 

 
Fig.5. A sample representation of 4 bit Vedic 

multiplication. 

       Primary 2x2 bit multiplier unit inputs are A1A0 and 

B1B0. The final block is 2x2 bit multiplier unit with inputs 

A1A2 and B3B2.The center one display 2 2x2 bit multiplier 

units with inputs A3A2 & B1B0 and A1A0 & B3 B2. 

Consequently the ending result of multiplication, which is 

eight bits, S7, S6 S5 S4 S3 S2 S1 S0. To obtain the last 

product (S7 S6 S5 S4 S3 S2 S1 S0), four 2x2 bit multiplier 

units and three 4-bit Ripple-Carry Adder units are required. 

The planned Vedic multiplier unit can be second-hand to 

reduce delay. In the early hours novel speak about Vedic 

multiplier units are based on array multiplier designs. On the 

other hand, I projected a new architecture, which is proficient 

in terms of speediness useful to reduce delay. Grippingly, an 

8x8 Vedic multiplier segment is developed easily with four 

4x4 multiplier units as shown in Fig.6.  

Fig.6. Block diagram for 4 bit Vedic multiplication. 

V. RESULT 

 
Fig.7. Simulation Waveform. 

VI. CONCLUSION 

       In this paper, presented a discrete cosine transform by 

employing Vedic multiplier architecture of URDHVA - 

TIRYAGBYAM sutras. Whereas the existing design is 

modified by multiplier architecture using carry look-ahead 

adder for a reduced amount of propagation delay, with a 

reduction of power consumption and area efficient by 

reducing the number of components. The key idea was to 

provide an increase of processing speed and save the time in 

high throughput applications. 
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