

www.semargroups.org

Volume 01, No. 01

Jul-Dec 2012, P.P. 24-31

Copyright @ 2012 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Performance the Prediction and Clustering for Uncertain Data

Using Decision Trees

M.MANASWINI

1
, B.PEDANARAYANA

2
, M.SREENIVASULU

3

1
 M.Tech Student of KSRM College of Engineering, Kadapa, AP-India,e-mail: manaswini.mana@gmail.com

2
Associate Prof, CSE Dept, KSRM, College of Engineering, Kadapa, AP-India

3
HOD,CSE Dept, KSRM, Kadapa, AP-India

Abstract: Traditional decision tree classifiers work with data whose values are known and precise. We extend such

classifiers to handle data with uncertain information, which originates from measurement/quantisation errors, data

staleness, multiple repeated measurements, etc. The value uncertainty is represented by multiple values forming a

probability distribution function (pdf). We discover that the accuracy of a decision tree classifier can be much

improved if the whole pdf, rather than a simple statistic, is taken into account. We extend classical decision tree

building algorithms to handle data tuples with uncertain values. Since processing pdf’s is computationally more

costly, we propose a series of pruning techniques that can greatly improve the efficiency of the construction of

decision trees.

Keywords: Uncertain Data, Decision Tree, Classification, Data Mining.

I. INTRODUCTION

 Classification is a classical problem in machine

learning and data mining[1]. Given a set of training data

tuples, each having a class label and being represented

by a feature vector, the task is to algorithmically build a

model that predicts the class label of an unseen test

tuple based on the tuple’s feature vector. One of the

most popular classification models is the decision tree

model. Decision trees are popular because they are

practical and easy to understand. Rules can also be

extracted from decision trees easily. Many algorithms,

such as ID3[2] and C4.5[3] have been devised for

decision tree construction. These algorithms are widely

adopted and used in a wide range of applications such as

image recognition, medical diagnosis[4], credit rating of

loan applicants, scientific tests, fraud detection, and

target marketing.

 In traditional decision-tree classification, a feature

(an attribute) of a tuple is either categorical or

numerical. For the latter, a precise and definite point

value is usually assumed. In many applications,

however, data uncertainty is common. The value of a

feature/attribute is thus best captured not by a single

point value, but by a range of values giving rise to a

probability distribution. A simple way to handle data

uncertainty is to This research is supported by Hong

Kong Research Grants Council Grant HKU 7134/06E.

abstract probability distributions by summary statistics

such as means and variances. We call this approach

Averaging.

 Another approach is to consider the complete

information carried by the probability distributions to

build a decision tree. We call this approach

Distribution-based. In this paper we study the problem

of constructing decision tree classifiers on data with

uncertain numerical attributes. Our goals are (1) to

devise an algorithm for building decision trees from

uncertain data using the Distribution-based approach;

(2) to investigate whether the Distribution-based

approach could lead to a higher classification accuracy

compared with the Averaging approach; and (3) to

establish a theoretical foundation on which pruning

techniques are derived that can significantly improve

the computational efficiency of the Distribution-based

algorithms.

 Before we delve into the details of our data model

and algorithms, let us discuss the sources of data

uncertainty and give some examples. Data uncertainty

arises naturally in many applications due to various

reasons. We briefly discuss three categories here:

measurement errors, data staleness, and repeated

measurements.

M.MANASWINI, B.PEDANARAYANA, M.SREENIVASULU

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

a) Measurement Errors: Data obtained from

measurementsby physical devices are often imprecise

due to measurement errors. As an example, a tympanic

(ear) thermometer measures body temperature by

measuring the temperature of the ear drum via an

infrared sensor. A typical ear thermometer has a quoted

calibration error of , which is about 6.7% of the

normal range of operation, noting that the human body

temperature ranges from (normal) and to

 (severe fever). Compound that with other

factors such as placement and technique, measurement

error can be very high. For example, it is reported in [5]

that about 24% of measurements are off by more than

, or about 17% of the operational range.

Another source of error is quantization errors introduced

by the digitisation process. Such errors can be properly

handled by assuming an appropriate error model, such

as a Gaussian error distribution for random noise or a

uniform error distribution for quantisation errors.

b) Data Staleness: In some applications, data values are

continuously changing and recorded information is

always stale. One example is location-based tracking

system. The where about of a mobile device can only be

approximated by imposing an uncertainty model on its

last reported location[6]. A typical uncertainty model

requires knowledge about the moving speed of the

device and whether its movement is restricted (such as a

car moving on a road network) or unrestricted (such as

an animal moving on plains). Typically a 2D probability

density function is defined over a bounded region to

model such uncertainty.

c) Repeated Measurements: Perhaps the most common

source of uncertainty comes from repeated

measurements. For example, a patient’s body

temperature could be taken multiple times during a day;

an anemometer could record wind speed once every

minute; the space shuttle has a large number of heat

sensors installed all over its surface. When we inquire

about a patient’s temperature, or wind speed, or the

temperature of a certain section of the shuttle, which

values shall we use? Or, would it be better to utilise all

the information by considering the distribution given by

the collected data values? As a more elaborate example,

consider the “BreastCancer” dataset reported in [7].

This dataset contains a number of tuples. Each tuple

corresponds to a microscopic image of stained cell

nuclei. A typical image contains 10–40 nuclei. One of

the features extracted from each image is the average

radius of nuclei. We remark that such a radius measure

contains a few sources of uncertainty: (1) an average is

taken from a large number of nuclei from an image, (2)

the radius of an (irregularly-shaped) nucleus is obtained

by averaging the length of the radial line segments

defined by the centroid of the nucleus and a large

number of sample points on the nucleus’ perimeter, and

(3) a nucleus’ perimeter was outlined by a user over a

fuzzy 2D image. From (1) and (2), we see that a radius

is computed from a large number of measurements with

a wide range of values. The source data points thus form

interesting distributions. From (3), the fuzziness of the

2D image can be modelled by allowing a radius

measure be represented by a range instead of a concrete

point-value.

 Yet another source of uncertainty comes from

the limitation of the data collection process. For

example, a survey may ask a question like, “How many

hours of TV do you watch each week?” A typical

respondent would not reply with an exact precise

answer. Rather, a range (e.g., “6–8 hours”) is usually

replied, possibly because the respondent is not so sure

about the answer himself. In this example, the survey

can restrict an answer to fall into a few pre-set

categories (such as “2–4 hours”, “4–7 hours”, etc.).

However, this restriction unnecessarily limits the

respondents’ choices and adds noise to the data. Also,

for preserving privacy, sometimes point data values are

transformed to ranges on purpose before publication.

 From the above examples, we see that in many

applications, information cannot be ideally represented

by point data. More often, a value is best captured by a

range possibly with a pdf. Our concept of uncertainty

refers to such ranges of values. Again, our goal is to

investigate how decision trees are built over uncertain

(range) data. Our contributions include:

1) A basic algorithm for constructing decision trees out

of uncertain datasets.

2) A study comparing the classification accuracy

achieved by the Averaging approach and the

Distribution-based approach.

3) A set of mathematical theorems that allow significant

pruning of the large search space of the best split point

determination during tree construction.

4) Efficient algorithms that employ pruning techniques

derived from the theorems.

5) A performance analysis on the various algorithms

through a set of experiments.

 In the rest of this paper, we first describe some

related works briefly in Section II. Then, we define the

problem formally in Section III. In Section IV, we

present our proposed algorithm and show empirically

that it can build decision trees with higher accuracies

than using only average values, especially when the

measurement errors are modelled appropriately. Pruning

Performance the Prediction and Clustering for Uncertain Data Using Decision Trees

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

techniques to improve our new algorithm are devised in

Section V, and experimental studies on the performance

are presented in Section VI. Finally, we briefly discuss

some related problems for further investigation in

Section VII and conclude the paper in Section VIII.

II. RELATED WORKS

There has been significant research interest in uncertain

data management in recent years. Data uncertainty has

been broadly classified as existential uncertainty and

value uncertainty. Existential uncertainty appears when

it is uncertain whether an object or a data tuple exists.

For example, a data tuple in a relational database could

be associated with a probability that represents the

confidence of its presence[8].“Probabilistic databases”

have been applied to semi-structured data and XML[9],

[10]. Value uncertainty, on the other hand, appears

when a tuple is known to exist, but its values are not

known precisely. A data item with value uncertainty is

usually represented by a pdf over a finite and bounded

region of possible values[11], [12]. One well-studied

topic on value uncertainty is “imprecise queries

processing”. The answer to such a query is associated

with a probabilistic guarantee on its correctness. For

example, indexing solutions for range queries on

uncertain data[13], solutions for aggregate queries[14]

such as nearest neighbour queries, and solutions for

imprecise location-dependent queries[11] have been

proposed.

 There has been a growing interest in uncertain

data mining. In [12], the well-known k-means clustering

algorithm is extended to the UK-means algorithm for

clustering uncertain data. As we have explained, data

uncertainty is usually captured by pdf’s, which are

generally represented by sets of sample values. Mining

uncertain data is therefore computationally costly due to

information explosion (sets of samples vs. single

values). To improve the performance of UK-means,

pruning techniques have been proposed. Examples

include min-maxdist pruning[15] and CK-means[16].

Apart from studies in partition-based uncertain data

clustering, other directions in uncertain data mining

include density-based clustering (e.g., FDBSCAN[17]),

frequent itemset mining[18] and densitybased

classification[19]. Density-based classification requires

that the joint probability distribution of the data

attributes be known. In [19], each data point is given an

error model.

 Upon testing, each test tuple is a point-valued

data. These are very different from our data model, as

we do not require the knowledge of the joint probability

distribution of the data attributes. Each attribute is

handled independently and may have its own error

model. Further, the test tuples, like the training tuples,

may contain uncertainty in our model. Decision tree

classification on uncertain data has been addressed for

decades in the form of missing values[2], [3]. Missing

values appear when some attribute values are not

available during data collection or due to data entry

errors. Solutions include approximating missing values

with the majority value or inferring the missing value

(either by exact or probabilistic values) using a classifier

on the attribute (e.g., ordered attribute tree[20] and

probabilistic attribute tree[21]). In C4.5[3] and

probabilistic decision trees[22], missing values in

training data are handled by using fractional tuples.

During testing, each missing value is replaced by

multiple values with probabilities based on the training

tuples, thus allowing probabilistic classification results.

In this work, we adopt the technique of fractional tuple

for splitting tuples into subsets when the domain of its

pdf spans across the split point.

 We have also adopted the idea of

probabilistic classification results. We do not directly

address the problem of handling missing values. Rather,

we tackle the problem of handling data uncertainty in a

more general form. Our techniques are general enough

for the existing missing-value handling methods to be

encapsulated naturally into our framework. Based on the

previously described approaches, a simple method of

“filling in” the missing values could be adopted to

handle the missing values, taking advantage of the

capability of handling arbitrary pdf’s in our approach.

We can take the average of the pdf of the attribute in

question over the tuples where the value is present. The

result is a pdf, which can be used as a “guess”

distribution of the attribute’s value in the missing tuples.

Then, we can proceed with decision tree construction.

Another related topic is fuzzy decision tree. Fuzzy

information models data uncertainty arising from human

perception and understanding[23]. The uncertainty

reflects the vagueness and ambiguity of concepts, e.g.,

how hot is “hot”. In fuzzy classification, both attributes

and class labels can be fuzzy and are represented in

fuzzy terms[23]. Given a fuzzy attribute of a data tuple,

a degree (called membership) is assigned to each

possible value, showing the extent to which the data

tuple belongs to a particular value. Our work instead

gives classification results as a distribution: for each test

tuple, we give a distribution telling how likely it belongs

to each class.

 There are many variations of fuzzy decision

trees, e.g., fuzzy extension of ID3[24], [25] and Soft

M.MANASWINI, B.PEDANARAYANA, M.SREENIVASULU

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

Decision Tree[26]. In these models, a node of the

decision tree does not give a crisp test which decides

deterministically which branch down the tree a training

or testing tuple is sent. Rather it gives a “soft test” or a

fuzzy test on the point-valued tuple. Based on the fuzzy

truth value of the test, the tuple is split into weighted

tuples (akin to fractional tuples) and these are sent down

the tree in parallel. This differs from the approach taken

in this paper, in which the probabilistic part stems from

the uncertainty embedded in the data tuples, while the

test represented by each node of our decision tree

remains crisp and deterministic. The advantage of our

approach is that the tuple splitting is based on

probability values, giving a natural interpretation to the

splitting as well as the result of classification.

 Building a decision tree on tuples with

numerical, pointvalued data is computationally

demanding [27]. A numerical attribute usually has a

possibly infinite domain of real or integral numbers,

inducing a large search space for the best “split point”.

Given a set of n training tuples with a numerical

attribute, there are as many as n-1 binary split points or

ways to partition the set of tuples into two non-empty

groups. Finding the best split point is thus

computationally expensive. To improve efficiency,

many techniques have been proposed to reduce the

number of candidate split points[28], [27], [29]. These

techniques utilise the convex property of well-known

evaluation functions like Information Gain[2] and Gini

Index[30]. For the evaluation function TSE (Training

Set Error), which is convex but not strictly convex, one

only needs to consider the “alternation points” as

candidate split points.[31] An alternation point is a point

at which the ranking of the classes (according to

frequency) changes. In this paper, we consider only

strictly convex evaluation functions. (See Section VII-D

for a brief discussion on how non-convex functions can

be handled.) Compared to those works, ours can be

considered an extension of their optimisation techniques

for handling uncertain data (see Section V-A).

III. PROBLEM DEFINITION

 This section formally defines the problem of

decision-tree classification on uncertain data. We first

discuss traditional decision trees briefly. Then, we

discuss how data tuples with uncertainty are handled.

A. Traditional Decision Trees

 In our model, a dataset consists of d training

tuples, and k numerical (real-

valued) feature attributes, A1; : : :Ak. The domain of

attribute Aj is dom(Aj) Each tuple ti is associated with a

feature vector Vi =

and a class label , where and

, the set of all class labels. The classification

problem is to construct a model M that maps each

feature vector to a

probability distribution Px on C such that given a test

tuple t0 , P0 =

 predicts the class label c0 with high

accuracy. We say that P0 predicts c0 if

.

Fig. 1. Classifying a test tuple

 We consider binary decision trees with tests on

numerical attributes. Each internal node n of a decision

tree is associated with an attribute and a split point

, giving a binary test . An internal node has

exactly 2 children. Each leaf node m in the decision tree

is associated with a discrete probability distribution

over C.

 To determine the class label of a given test tuple

 , we traverse the tree top

down, starting from the root node. When we visit an

internal node n, we split the tuple into two parts at zn

and distribute each part recursively down the child

nodes accordingly. Eventually, we reach leaf nodes. The

probability distribution Pm at each leaf node m

contributes1 to the final distribution P0 for predicting

the class label of t0. This is illustrated with the example

in Figure 1.

 A pdf could be programmed analytically if

it can be specified in closed forms. More typically, it

would be implemented numerically by storing a set of s

sample points with the associated value

, effectively approximating fi,j by a discrete

distribution. We adopt this numerical approach for the

rest this paper. With this representation, the amount of

information available is exploded by a factor of s.

Hopefully, the richer information allows us to build a

better classification model. The most challenging task is

to construct a decision tree based on tuples with

uncertain values, finding suitable Ajn and zn for each

Performance the Prediction and Clustering for Uncertain Data Using Decision Trees

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

internal node n, as well as an appropriate probability

distribution Pm for each leave node m.

IV. ALGORITHMS

We propose two approaches for handling uncertain data.

A. Averaging

 A straight-forward way to deal with the uncertain

information is to replace each pdf with its expected

value, thus effectively converting the data tuples to

point-valued tuples. This reduces the problem back to

that for point-valued data, and hence traditional decision

tree algorithms such as ID3

TABLE I

EXAMPLE TUPLES

Fig 2. Decision tree built from example tuples in Table I

and C4.5[3] can be reused. We call this approach AVG

(for Averaging). We use an algorithm based on C4.5,

using entropy as the dispersion measure. To alleviate

the problem of overfitting, we apply the techniques of

pre-pruning and postpruning (see [12], [3]). This is

illustrated using the example tuples shown in Table I.

The resulting decision tree is shown in Figure 2(a).

Now, if we use the 6 tuples in Table I as test tuples, this

decision tree will classify tuples 2, 4, 6 as class •”B”

(the most likely class label in L) and the rest as •”A”.

Hence it misclassifies tuples 2 and 5. The accuracy is

2/3.

B. Distribution-based

 For uncertain data, we adopt the same decision

tree building framework, including the techniques of

pre-pruning and postpruning. After an attribute and a

split point zn has been chosen for a node n, we split the

set of tuples S into two subsets L and R. The major

difference from the point-data case lies in the way the

set S is split. If the pdf properly contains the split point,

i.e., we split into two

fractional tuples[3] tL and tR and add them to L and R,

respectively.1 We call this algorithm UDT (for

Uncertain Decision Tree).

 The key to building a good decision tree is a good

choice of an attribute and a split point zn for each

node n. With uncertain data, however, the number of

choices of a split point given an attribute is not limited

to m-1 point values, but the union of the domains of all

pdfs . Representing each

with s sample points, there are in total ms sample points.

So, there are at most ms.1 possible split points to

consider. Comparing to AVG, UDT is s time more

expensive, computationally. Let us re-examine the

example tuples in Table I to see how the distribution-

based algorithm can improve classification accuracy. By

taking into account the probability distribution, UDT

builds the tree shown in Figure 3 before pre-pruning and

post-pruning are applied. This tree turns out to have a

100% classification accuracy! After post-pruning, we

get the tree in Figure 2(b). Use the 6 tuples in Table I as

testing tuples to test this pruned tree, all 6 tuples are

classified correctly.

Fig. 3. Example decision tree before post-pruning

TABLE II

ACCURACY IMPROVEMENT BY CONSIDERING

THE DISTRIBUTION

M.MANASWINI, B.PEDANARAYANA, M.SREENIVASULU

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

The accuracy is 100%. This example thus illustrates that

by considering probability distributions rather than just

expected values, we can potentially build a more

accurate decision tree.

C. Experiments on Accuracy

 We have implemented AVG and UDT and applied

them to 10 real data sets taken from the UCI Machine

Learning Repository[13]. The results are shown in

Table II. For most of the datasets, the data uncertainty is

modelled with a Gaussian distribution with a

controllable parameter w. For the •”JapaneseVowel”

data set, we use the uncertainty given by the raw data to

model the pdf.

 From the table, we see that UDT builds more

accurate decision trees than AVG does. For instance, for

the first data set, whose pdf is modelled from the raw

data samples, the accuracy is improved from 81.89% to

87.30%; i.e., the error rate is reduced from 18.11%

down to 12.70%, which is a very significant

improvement. Only in a few cases (marked with •g#•h

in the table) does UDT give slightly worse accuracies

than AVG. Comparing the second and third columns of

Table II, we see that UDT can potentially build

remarkably more accurate decision trees than AVG.

V. PRUNING ALGORITHMS

 Although UDT can build a more accurate decision

tree, it is not as efficient as AVG. UDT has to perform s

times as many computations as AVG. We have come up

with a few strategies for pruning candidate split points.

A. Pruning Empty and Homogeneous Intervals

 The hardest problem to solve in UDT is to select

an attribute and split point zj to minimise the entropy.

Let us focus on finding the best split point for one

particular attribute . We define the set of end-

points of tuples in S on attribute as

 for some We

assume that there are v such end-points,

 sorted in ascending order. Within

 , we want to find an optimal split point for

attribute .

Definition 1: For a given set of tuples S, an optimal split

point for an attribute is one that minimises the

entropy. (Note that the minimisation is taken over all

,The end-points define v-1 disjoint

intervals:) for , We will

examine each interval separately. For convenience, an

interval is denoted by (a, b].

Definition 2 (Empty interval): An interval (a, b] is

empty if for all .

Definition 3 (Homogeneous interval): An interval (a, b]

is homogeneous if there exists a class label

such that for all

. Intuitively, an interval is empty if no pdf’s

domain intersects it; an interval is homogeneous if all

the pdf’s that intersect it come from tuples of the same

class.

Definition 4 (Heterogeneous interval): An interval (a, b]

is heterogeneous if it is neither empty nor

homogeneous.

Theorem 1: If an optimal split point falls in an empty

interval, then an end-point of the interval is also an

optimal split point.

Theorem 2: If an optimal split point falls in a

homogeneous interval, then an end-point of the interval

is also an optimal split point.

 The implication of these theorems is that interior

points in empty and homogeneous intervals need not be

considered when we are looking for an optimal split

point. The analogue for the point-data case is also well

known. [10]. Applying Theorems 1 and 2 to UDT

allows us to prune away the interior points of empty and

homogeneous intervals. This gives our Basic Pruning

algorithm UDT-BP.

B. Pruning by Bounding

 Our next algorithm attempts to prune away

heterogeneous intervals through a bounding technique.

First we compute the entropy for all end-

points . Let be the minimum value. Next,

for each heterogeneous interval (a, b], we compute a

lower bound, , of over all candidate split

points z • ̧ (a, b]. If , we know that none of

the candidate split points within the interval (a, b] can

give an entropy that is smaller than and thus the

whole interval can be pruned.

 We note that the number of end-points is much

smaller than the total number of candidate split

points. So, if a lot of heterogeneous intervals are pruned

in this manner, we can eliminate many entropy

calculations. The cost1 of computing Lj is roughly the

same as evaluating the entropy of only one split point.

So, if an interval is pruned by the lowerbound

technique, we have reduced the cost of computing the

entropy values of all split points in the interval to the

computation of one entropy-like lower bound.

Combining this heterogeneous interval pruning

Performance the Prediction and Clustering for Uncertain Data Using Decision Trees

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

technique with those for empty and homogeneous

intervals gives us the Local Pruning

Fig. 4. Performance of the pruning algorithms

algorithm UDT-LP. A simple but effective

improvement on UDT-LP is to use a global (across all

attributes Aj) threshold for

pruning. This gives UDT-GP.

C. End-point sampling

 As we will see later in Section VI, UDT-GP is very

effective in pruning intervals. In some settings, UDT-

GP reduces the number of •”entropy calculations”

(including the calculation of entropy values of split

points and the calculation of entropylike lower bounds

for intervals) to only 2.7% of that of UDT.

 On a closer inspection, we find that many of these

remaining entropy calculations come from the

determination of end-point entropy values. In order to

further improve the algorithm’s performance, we

propose a method to prune these end-points. We can

take a sample of the end-points (say 10%) and use their

entropy values to derive a pruning threshold. This

threshold might be slightly less effective as the one

derived from all end-points, however, finding it requires

much fewer entropy calculations. Incorporate this End-

point Sampling strategy into UDT-GP gives us our next

algorithm UDT-ES.

VI. EXPERIMENTS ON EFFICIENCY

 The algorithms described above have been

implemented in Java using JDK 1.6 and a series of

experiments were performed on a PC with an Intel Core

2 Duo 2.66GHz CPU.

A. Execution Tim: We first examine the execution time

of the algorithms, which is charted in Figure 4(a). We

have given also the execution time of the AVG

algorithm (see Section IV-A). Note that AVG builds

different decision trees from those constructed by the

UDT-based algorithms, and that AVG generally builds

less accurate classifiers. The execution time of AVG

shown in the figure is for reference only. From the

figure, we observe the following general (ascending)

order of efficiency: UDT, UDTBP, UDT-LP, UDT-GP,

UDT-ES. The AVG algorithm, which does not exploit

the uncertainty information, takes the least time to

finish, but cannot achieve as high an accuracy compared

to the distribution-based algorithms (see Section IV-C).

 We remark that in the experiment, each pdf is

represented by 100 sample points (i.e., s = 100). All

UDT-based algorithms thus have to handle 99 times

more data (except for the •”JapaneseVowel” data) than

AVG, which only processes one average per pdf.

B. Pruning Effectiveness

 Next, we study the pruning effectiveness of the

algorithms. Figure 4(b) shows the number of entropy

calculations performed by each algorithm. As we have

explained, the computation time of the lower bound of

an interval is comparable to that of computing an

entropy. Therefore, for UDT-LP, UDTGP, and UDT-

ES, the number of entropy calculations include the

number of lower bounds computed. The figure shows

that our pruning techniques introduced in Section V are

highly effective. Indeed, UDT-ES reduces the number

of entropy calculations to 0.56%.28% when compared

with UDT. It thus achieves a pruning effectiveness

ranging from 72% up to as much as 99.44%. As entropy

calculations dominate the execution time of UDT, such

effective pruning techniques significantly reduce the

tree-construction time.

VII. CONCLUSION

 We have extended the model of decision-tree

classification and tree-construction algorithms[3] to

accommodate data tuples having numerical attributes

with uncertainty described by arbitrary pdf•fs.

Experiments show that exploiting data uncertainty leads

to decision trees with remarkably higher accuracies.

Performance is an issue, though, because of the

increased amount of information to be processed. We

have devised a series of highly effective pruning

techniques to improve tree construction efficiency.

Pruning by bounding and end-point sampling are novel

pruning techniques. Although our novel techniques are

primarily designed to handle uncertain data, they are

also useful for building decision trees using classical

algorithms when there are tremendous amounts of data

tuples.

M.MANASWINI, B.PEDANARAYANA, M.SREENIVASULU

International Journal of Scientific Engineering and Technology Research

Vol. 01, No. 01, Jul-Dec 2012, pp. 24-31

VIII. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami,

•’Database mining: A performance perspective’, IEEE

Trans. Knowl. Data Eng., 2008.

[2] J. R. Quinlan, •gInduction of decision

trees,•’Machine Learning, 2006.

[3] Programs for Machine Learning. Morgan Kaufmann,

2003.

[4] C. L. Tsien, I. S. Kohane, and N. McIntosh,

•’Multiple signal integration by decision tree induction

to detect artifacts in the neonatal intensive care unit,•h

Artificial Intelligence in Medicine, vol. 19, no. 3, 2000.

[5] M. Chau, R. Cheng, B. Kao, and J. Ng, •gUncertain

data mining: An example in clustering location data,•h

in PAKDD, 2006, pp. 199.204.

[6] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M.

Chau, and K. Y. Yip, •gEfficient clustering of uncertain

data,•h in ICDM, 2006, pp. 436.445.

[7] S. D. Lee, B. Kao, and R. Cheng, •gReducing UK-

means to K-means,•h in 1st Workshop on Data Mining

of Uncertain Data, in ICDM, 2007.

[8] Y. Yuan and M. J. Shaw, •gInduction of fuzzy

decision trees,•h Fuzzy Sets Syst., vol. 69, no. 2, pp.

125.139, 1995.

[9] T. Elomaa and J. Rousu, •gGeneral and efficient

multisplitting of numerical attributes,•h Machine

Learning, vol. 36, no. 3, pp. 201.244, 1999.

[10] U. M. Fayyad and K. B. Irani, •gOn the handling

of continuous-valued attributes in decision tree

generation,•h Machine Learning, 1992.

[11] T. Elomaa and J. Rousu, •gEfficient multisplitting

revisited: Optimapreserving elimination of partition

candidates,•h Data Mining and Knowledge Discovery,

vol. 8, no. 2, pp. 97.126, 2004.

[12] T. M. Mitchell, Machine Learning. McGraw-Hill,

1997.

[13] A. Asuncion and D. Newman, •gUCI machine

learning repository,•h 2007. [Online]. Available:

http://www.ics.uci.edu/�mlearn/MLRepository.html

	PointTmp
	OLE_LINK3
	OLE_LINK4
	OLE_LINK9
	OLE_LINK10

