
  
      

www.semargroups.org 

Volume 01, No. 01  
 

Jul-Dec 2012, P.P. 24-31 

 

Copyright @ 2012 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved. 

Performance the Prediction and Clustering for Uncertain Data 

Using Decision Trees                                                              
                          

 
M.MANASWINI

1
, B.PEDANARAYANA

2
, M.SREENIVASULU

3 

1
 M.Tech Student of KSRM College of Engineering, Kadapa, AP-India,e-mail: manaswini.mana@gmail.com                                                          

2
Associate Prof, CSE Dept, KSRM, College of Engineering, Kadapa, AP-India 

3
HOD,CSE Dept, KSRM, Kadapa, AP-India 

 
 

Abstract: Traditional decision tree classifiers work with data whose values are known and precise. We extend such 

classifiers to handle data with uncertain information, which originates from measurement/quantisation errors, data 

staleness, multiple repeated measurements, etc. The value uncertainty is represented by multiple values forming a 

probability distribution function (pdf). We discover that the accuracy of a decision tree classifier can be much 

improved if the whole pdf, rather than a simple statistic, is taken into account. We extend classical decision tree 

building algorithms to handle data tuples with uncertain values. Since processing pdf’s is computationally more 

costly, we propose a series of pruning techniques that can greatly improve the efficiency of the construction of 

decision trees. 
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I. INTRODUCTION 

        Classification is a classical problem in machine 

learning and data mining[1]. Given a set of training data 

tuples, each having a class label and being represented 

by a feature vector, the task is to algorithmically build a 

model that predicts the class label of an unseen test 

tuple based on the tuple’s feature vector. One of the 

most popular classification models is the decision tree 

model. Decision trees are popular because they are 

practical and easy to understand. Rules can also be 

extracted from decision trees easily. Many algorithms, 

such as ID3[2] and C4.5[3] have been devised for 

decision tree construction. These algorithms are widely 

adopted and used in a wide range of applications such as 

image recognition, medical diagnosis[4], credit rating of 

loan applicants, scientific tests, fraud detection, and 

target marketing.  

          In traditional decision-tree classification, a feature 

(an attribute) of a tuple is either categorical or 

numerical. For the latter, a precise and definite point 

value is usually assumed. In many applications, 

however, data uncertainty is common. The value of a 

feature/attribute is thus best captured not by a single 

point value, but by a range of values giving rise to a 

probability distribution. A simple way to handle data 

uncertainty is to This research is supported by Hong 

Kong Research Grants Council Grant HKU 7134/06E.  

abstract probability distributions by summary statistics 

such as means and variances. We call this approach 

Averaging. 

            Another approach is to consider the complete 

information carried by the probability distributions to 

build a decision tree. We call this approach 

Distribution-based. In this paper we study the problem 

of constructing decision tree classifiers on data with 

uncertain numerical attributes. Our goals are (1) to 

devise an algorithm for building decision trees from 

uncertain data using the Distribution-based approach; 

(2) to investigate whether the Distribution-based 

approach could lead to a higher classification accuracy 

compared with the Averaging approach; and (3) to 

establish a theoretical foundation on which pruning 

techniques are derived that can significantly improve 

the computational efficiency of the Distribution-based 

algorithms. 

       Before we delve into the details of our data model 

and algorithms, let us discuss the sources of data 

uncertainty and give some examples. Data uncertainty 

arises naturally in many applications due to various 

reasons. We briefly discuss three categories here: 

measurement errors, data staleness, and repeated 

measurements. 
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a) Measurement Errors: Data obtained from 

measurementsby physical devices are often imprecise 

due to measurement errors. As an example, a tympanic 

(ear) thermometer measures body temperature by 

measuring the temperature of the ear drum via an 

infrared sensor. A typical ear thermometer has a quoted 

calibration error of , which is about 6.7% of the 

normal range of operation, noting that the human body 

temperature ranges from  (normal) and to 

 (severe fever). Compound that with other 

factors such as placement and technique, measurement 

error can be very high. For example, it is reported in [5] 

that about 24% of measurements are off by more than 

, or about 17% of the operational range. 

Another source of error is quantization errors introduced 

by the digitisation process. Such errors can be properly 

handled by assuming an appropriate error model, such 

as a Gaussian error distribution for random noise or a 

uniform error distribution for quantisation errors. 

 

b) Data Staleness: In some applications, data values are 

continuously changing and recorded information is 

always stale. One example is location-based tracking 

system. The where about of a mobile device can only be 

approximated by imposing an uncertainty model on its 

last reported location[6]. A typical uncertainty model 

requires knowledge about the moving speed of the 

device and whether its movement is restricted (such as a 

car moving on a road network) or unrestricted (such as 

an animal moving on plains). Typically a 2D probability 

density function is defined over a bounded region to 

model such uncertainty. 

c) Repeated Measurements: Perhaps the most common 

source of uncertainty comes from repeated 

measurements. For example, a patient’s body 

temperature could be taken multiple times during a day; 

an anemometer could record wind speed once every 

minute; the space shuttle has a large number of heat 

sensors installed all over its surface. When we inquire 

about a patient’s temperature, or wind speed, or the 

temperature of a certain section of the shuttle, which 

values shall we use? Or, would it be better to utilise all 

the information by considering the distribution given by 

the collected data values? As a more elaborate example, 

consider the “BreastCancer” dataset reported in [7]. 

This dataset contains a number of tuples. Each tuple 

corresponds to a microscopic image of stained cell 

nuclei. A typical image contains 10–40 nuclei. One of 

the features extracted from each image is the average 

radius of nuclei. We remark that such a radius measure 

contains a few sources of uncertainty: (1) an average is 

taken from a large number of nuclei from an image, (2) 

the radius of an (irregularly-shaped) nucleus is obtained 

by averaging the length of the radial line segments 

defined by the centroid of the nucleus and a large 

number of sample points on the nucleus’ perimeter, and 

(3) a nucleus’ perimeter was outlined by a user over a 

fuzzy 2D image. From (1) and (2), we see that a radius 

is computed from a large number of measurements with 

a wide range of values. The source data points thus form 

interesting distributions. From (3), the fuzziness of the 

2D image can be modelled by allowing a radius 

measure be represented by a range instead of a concrete 

point-value.  

            Yet another source of uncertainty comes from 

the limitation of the data collection process. For 

example, a survey may ask a question like, “How many 

hours of TV do you watch each week?” A typical 

respondent would not reply with an exact precise 

answer. Rather, a range (e.g., “6–8 hours”) is usually 

replied, possibly because the respondent is not so sure 

about the answer himself. In this example, the survey 

can restrict an answer to fall into a few pre-set 

categories (such as “2–4 hours”, “4–7 hours”, etc.). 

However, this restriction unnecessarily limits the 

respondents’ choices and adds noise to the data. Also, 

for preserving privacy, sometimes point data values are 

transformed to ranges on purpose before publication. 

             From the above examples, we see that in many 

applications, information cannot be ideally represented 

by point data. More often, a value is best captured by a 

range possibly with a pdf. Our concept of uncertainty 

refers to such ranges of values. Again, our goal is to 

investigate how decision trees are built over uncertain 

(range) data. Our contributions include: 

1) A basic algorithm for constructing decision trees out 

of uncertain datasets. 

2) A study comparing the classification accuracy 

achieved by the Averaging approach and the 

Distribution-based approach. 

3) A set of mathematical theorems that allow significant 

pruning of the large search space of the best split point 

determination during tree construction. 

4) Efficient algorithms that employ pruning techniques 

derived from the theorems. 

5) A performance analysis on the various algorithms 

through a set of experiments. 

     In the rest of this paper, we first describe some 

related works briefly in Section II. Then, we define the 

problem formally in Section III. In Section IV, we 

present our proposed algorithm and show empirically 

that it can build decision trees with higher accuracies 

than using only average values, especially when the 

measurement errors are modelled appropriately. Pruning 
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techniques to improve our new algorithm are devised in 

Section V, and experimental studies on the performance 

are presented in Section VI. Finally, we briefly discuss 

some related problems for further investigation in 

Section VII and conclude the paper in Section VIII. 

II. RELATED WORKS 

There has been significant research interest in uncertain 

data management in recent years. Data uncertainty has 

been broadly classified as existential uncertainty and 

value uncertainty. Existential uncertainty appears when 

it is uncertain whether an object or a data tuple exists. 

For example, a data tuple in a relational database could 

be associated with a probability that represents the 

confidence of its presence[8].“Probabilistic databases” 

have been applied to semi-structured data and XML[9], 

[10]. Value uncertainty, on the other hand, appears 

when a tuple is known to exist, but its values are not 

known precisely. A data item with value uncertainty is 

usually represented by a pdf over a finite and bounded 

region of possible values[11], [12]. One well-studied 

topic on value uncertainty is “imprecise queries 

processing”. The answer to such a query is associated 

with a probabilistic guarantee on its correctness. For 

example, indexing solutions for range queries on 

uncertain data[13], solutions for aggregate queries[14] 

such as nearest neighbour queries, and solutions for 

imprecise location-dependent queries[11] have been 

proposed. 

             There has been a growing interest in uncertain 

data mining. In [12], the well-known k-means clustering 

algorithm is extended to the UK-means algorithm for 

clustering uncertain data. As we have explained, data 

uncertainty is usually captured by pdf’s, which are 

generally represented by sets of sample values. Mining 

uncertain data is therefore computationally costly due to 

information explosion (sets of samples vs. single 

values). To improve the performance of UK-means, 

pruning techniques have been proposed. Examples 

include min-maxdist pruning[15] and CK-means[16]. 

Apart from studies in partition-based uncertain data 

clustering, other directions in uncertain data mining 

include density-based clustering (e.g., FDBSCAN[17]), 

frequent itemset mining[18] and densitybased 

classification[19]. Density-based classification requires 

that the joint probability distribution of the data 

attributes be known. In [19], each data point is given an 

error model. 

         Upon testing, each test tuple is a point-valued 

data. These are very different from our data model, as 

we do not require the knowledge of the joint probability 

distribution of the data attributes. Each attribute is 

handled independently and may have its own error 

model. Further, the test tuples, like the training tuples, 

may contain uncertainty in our model. Decision tree 

classification on uncertain data has been addressed for 

decades in the form of missing values[2], [3]. Missing 

values appear when some attribute values are not 

available during data collection or due to data entry 

errors. Solutions include approximating missing values 

with the majority value or inferring the missing value 

(either by exact or probabilistic values) using a classifier 

on the attribute (e.g., ordered attribute tree[20] and 

probabilistic attribute tree[21]). In C4.5[3] and 

probabilistic decision trees[22], missing values in 

training data are handled by using fractional tuples. 

During testing, each missing value is replaced by 

multiple values with probabilities based on the training 

tuples, thus allowing probabilistic classification results. 

In this work, we adopt the technique of fractional tuple 

for splitting tuples into subsets when the domain of its 

pdf spans across the split point. 

                  We have also adopted the idea of 

probabilistic classification results. We do not directly 

address the problem of handling missing values. Rather, 

we tackle the problem of handling data uncertainty in a 

more general form. Our techniques are general enough 

for the existing missing-value handling methods to be 

encapsulated naturally into our framework. Based on the 

previously described approaches, a simple method of 

“filling in” the missing values could be adopted to 

handle the missing values, taking advantage of the 

capability of handling arbitrary pdf’s in our approach. 

We can take the average of the pdf of the attribute in 

question over the tuples where the value is present. The 

result is a pdf, which can be used as a “guess” 

distribution of the attribute’s value in the missing tuples. 

Then, we can proceed with decision tree construction. 

Another related topic is fuzzy decision tree. Fuzzy 

information models data uncertainty arising from human 

perception and understanding[23]. The uncertainty 

reflects the vagueness and ambiguity of concepts, e.g., 

how hot is “hot”. In fuzzy classification, both attributes 

and class labels can be fuzzy and are represented in 

fuzzy terms[23]. Given a fuzzy attribute of a data tuple, 

a degree (called membership) is assigned to each 

possible value, showing the extent to which the data 

tuple belongs to a particular value. Our work instead 

gives classification results as a distribution: for each test 

tuple, we give a distribution telling how likely it belongs 

to each class.  

            There are many variations of fuzzy decision 

trees, e.g., fuzzy extension of ID3[24], [25] and Soft 
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Decision Tree[26]. In these models, a node of the 

decision tree does not give a crisp test which decides 

deterministically which branch down the tree a training 

or testing tuple is sent. Rather it gives a “soft test” or a 

fuzzy test on the point-valued tuple. Based on the fuzzy 

truth value of the test, the tuple is split into weighted 

tuples (akin to fractional tuples) and these are sent down 

the tree in parallel. This differs from the approach taken 

in this paper, in which the probabilistic part stems from 

the uncertainty embedded in the data tuples, while the 

test represented by each node of our decision tree 

remains crisp and deterministic. The advantage of our 

approach is that the tuple splitting is based on 

probability values, giving a natural interpretation to the 

splitting as well as the result of classification. 

           Building a decision tree on tuples with 

numerical, pointvalued data is computationally 

demanding [27]. A numerical attribute usually has a 

possibly infinite domain of real or integral numbers, 

inducing a large search space for the best “split point”. 

Given a set of n training tuples with a numerical 

attribute, there are as many as n-1 binary split points or 

ways to partition the set of tuples into two non-empty 

groups. Finding the best split point is thus 

computationally expensive. To improve efficiency, 

many techniques have been proposed to reduce the 

number of candidate split points[28], [27], [29]. These 

techniques utilise the convex property of well-known 

evaluation functions like Information Gain[2] and Gini 

Index[30]. For the evaluation function TSE (Training 

Set Error), which is convex but not strictly convex, one 

only needs to consider the “alternation points” as 

candidate split points.[31] An alternation point is a point 

at which the ranking of the classes (according to 

frequency) changes. In this paper, we consider only 

strictly convex evaluation functions. (See Section VII-D 

for a brief discussion on how non-convex functions can 

be handled.) Compared to those works, ours can be 

considered an extension of their optimisation techniques 

for handling uncertain data (see Section V-A).  

III. PROBLEM DEFINITION 

        This section formally defines the problem of 

decision-tree classification on uncertain data. We first 

discuss traditional decision trees briefly. Then, we 

discuss how data tuples with uncertainty are handled. 

A. Traditional Decision Trees 

         In our model, a dataset consists of d training 

tuples, and k numerical (real-

valued) feature attributes, A1; : : :Ak. The domain of 

attribute Aj is dom(Aj) Each tuple ti is associated with a 

feature vector Vi =  

and a class label , where  and 

, the set of all class labels. The classification 

problem is to construct a model M that maps each 

feature vector  to a 

probability distribution Px on C  such that given a test 

tuple t0 , P0 = 

 predicts the class label c0 with high 

accuracy. We say that P0 predicts c0 if 

. 

 

Fig. 1. Classifying a test tuple 

          We consider binary decision trees with tests on 

numerical attributes. Each internal node n of a decision 

tree is associated with an attribute  and a split point 

, giving a binary test . An internal node has 

exactly 2 children. Each leaf node m in the decision tree 

is associated with a discrete probability distribution  

over C. 

      To determine the class label of a given test tuple 

  , we traverse the tree top 

down, starting from the root node. When we visit an 

internal node n, we split the tuple into two parts at zn 

and distribute each part recursively down the child 

nodes accordingly. Eventually, we reach leaf nodes. The 

probability distribution Pm at each leaf node m 

contributes1 to the final distribution P0 for predicting 

the class label of t0. This is illustrated with the example 

in Figure 1. 

                A pdf  could be programmed analytically if 

it can be specified in closed forms. More typically, it 

would be implemented numerically by storing a set of s 

sample points with the associated value 

, effectively approximating fi,j by a discrete 

distribution. We adopt this numerical approach for the 

rest this paper. With this representation, the amount of 

information available is exploded by a factor of s. 

Hopefully, the richer information allows us to build a 

better classification model. The most challenging task is 

to construct a decision tree based on tuples with 

uncertain values, finding suitable Ajn and zn for each 
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internal node n, as well as an appropriate probability 

distribution Pm for each leave node m. 

IV. ALGORITHMS 

We propose two approaches for handling uncertain data. 

A. Averaging 

        A straight-forward way to deal with the uncertain 

information is to replace each pdf with its expected 

value, thus effectively converting the data tuples to 

point-valued tuples. This reduces the problem back to 

that for point-valued data, and hence traditional decision 

tree algorithms such as ID3 

TABLE I 

EXAMPLE TUPLES 

 

Fig 2. Decision tree built from example tuples in Table I 

and C4.5[3] can be reused. We call this approach AVG 

(for Averaging). We use an algorithm based on C4.5, 

using entropy as the dispersion measure. To alleviate 

the problem of overfitting, we apply the techniques of 

pre-pruning and postpruning (see [12], [3]). This is 

illustrated using the example tuples shown in Table I. 

The resulting decision tree is shown in Figure 2(a). 

Now, if we use the 6 tuples in Table I as test tuples, this 

decision tree will classify tuples 2, 4, 6 as class •”B” 

(the most likely class label in L) and the rest as •”A”. 

Hence it misclassifies tuples 2 and 5. The accuracy is 

2/3. 

B. Distribution-based 

           For uncertain data, we adopt the same decision 

tree building framework, including the techniques of 

pre-pruning and postpruning. After an attribute  and a 

split point zn has been chosen for a node n, we split the 

set of tuples S into two subsets L and R. The major 

difference from the point-data case lies in the way the 

set S is split. If the pdf properly contains the split point, 

i.e.,  we split  into two 

fractional tuples[3] tL and tR and add them to L and R, 

respectively.1 We call this algorithm UDT (for 

Uncertain Decision Tree). 

       The key to building a good decision tree is a good 

choice of an attribute  and a split point zn for each 

node n. With uncertain data, however, the number of 

choices of a split point given an attribute is not limited 

to m-1 point values, but the union of the domains of all 

pdfs . Representing each  

with s sample points, there are in total ms sample points. 

So, there are at most ms.1 possible split points to 

consider. Comparing to AVG, UDT is s time more 

expensive, computationally. Let us re-examine the 

example tuples in Table I to see how the distribution-

based algorithm can improve classification accuracy. By 

taking into account the probability distribution, UDT 

builds the tree shown in Figure 3 before pre-pruning and 

post-pruning are applied. This tree turns out to have a 

100% classification accuracy! After post-pruning, we 

get the tree in Figure 2(b). Use the 6 tuples in Table I as 

testing tuples to test this pruned tree, all 6 tuples are 

classified correctly. 

 

Fig. 3. Example decision tree before post-pruning 

TABLE II 

ACCURACY IMPROVEMENT BY CONSIDERING 

THE DISTRIBUTION 
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The accuracy is 100%. This example thus illustrates that 

by considering probability distributions rather than just 

expected values, we can potentially build a more 

accurate decision tree. 

C. Experiments on Accuracy 

         We have implemented AVG and UDT and applied 

them to 10 real data sets taken from the UCI Machine 

Learning Repository[13]. The results are shown in 

Table II. For most of the datasets, the data uncertainty is 

modelled with a Gaussian distribution with a 

controllable parameter w. For the •”JapaneseVowel” 

data set, we use the uncertainty given by the raw data to 

model the pdf. 

              From the table, we see that UDT builds more 

accurate decision trees than AVG does. For instance, for 

the first data set, whose pdf is modelled from the raw 

data samples, the accuracy is improved from 81.89% to 

87.30%; i.e., the error rate is reduced from 18.11% 

down to 12.70%, which is a very significant 

improvement. Only in a few cases (marked with •g#•h 

in the table) does UDT give slightly worse accuracies 

than AVG. Comparing the second and third columns of 

Table II, we see that UDT can potentially build 

remarkably more accurate decision trees than AVG.  

V. PRUNING ALGORITHMS 

        Although UDT can build a more accurate decision 

tree, it is not as efficient as AVG. UDT has to perform s 

times as many computations as AVG. We have come up 

with a few strategies for pruning candidate split points. 

A. Pruning Empty and Homogeneous Intervals 

            The hardest problem to solve in UDT is to select 

an attribute  and split point zj to minimise the entropy. 

Let us focus on  finding the best split point for one 

particular attribute  . We define the set  of end-

points of tuples in S on attribute  as 

 for some  We 

assume that there are v such end-points, 

 sorted in ascending order. Within 

 , we want to find an optimal split point for 

attribute . 

Definition 1: For a given set of tuples S, an optimal split 

point for an attribute  is one that minimises the 

entropy. (Note that the minimisation is taken over all 

,The end-points define v-1 disjoint 

intervals: )  for , We will 

examine each interval separately. For convenience, an 

interval is denoted by (a, b].  

Definition 2 (Empty interval): An interval (a, b] is 

empty if  for all . 

Definition 3 (Homogeneous interval): An interval (a, b] 

is homogeneous if there exists a class label  

such that  for all 

.  Intuitively, an interval is empty if no pdf’s 

domain intersects it; an interval is homogeneous if all 

the pdf’s that intersect it come from tuples of the same 

class. 

Definition 4 (Heterogeneous interval): An interval (a, b] 

is heterogeneous if it is neither empty nor 

homogeneous. 

Theorem 1: If an optimal split point falls in an empty 

interval, then an end-point of the interval is also an 

optimal split point. 

Theorem 2: If an optimal split point falls in a 

homogeneous interval, then an end-point of the interval 

is also an optimal split point. 

           The implication of these theorems is that interior 

points in empty and homogeneous intervals need not be 

considered when we are looking for an optimal split 

point. The analogue for the point-data case is also well 

known. [10]. Applying Theorems 1 and 2 to UDT 

allows us to prune away the interior points of empty and 

homogeneous intervals. This gives our Basic Pruning 

algorithm UDT-BP. 

B. Pruning by Bounding 

          Our next algorithm attempts to prune away 

heterogeneous intervals through a bounding technique. 

First we compute the entropy  for all end-

points . Let   be the minimum value. Next, 

for each heterogeneous interval (a, b], we compute a 

lower bound, , of  over all candidate split 

points z •  ̧ (a, b]. If  , we know that none of 

the candidate split points within the interval (a, b] can 

give an entropy that is smaller than   and thus the 

whole interval can be pruned. 

           We note that the number of end-points is much 

smaller  than the total number of candidate split 

points. So, if a lot of heterogeneous intervals are pruned 

in this manner, we can eliminate many entropy 

calculations. The cost1 of computing Lj is roughly the 

same as evaluating the entropy of only one split point. 

So, if an interval is pruned by the lowerbound 

technique, we have reduced the cost of computing the 

entropy values of all split points in the interval to the 

computation of one entropy-like lower bound. 

Combining this heterogeneous interval pruning 
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technique with those for empty and homogeneous 

intervals gives us the Local Pruning 

 

Fig. 4. Performance of the pruning algorithms 

algorithm UDT-LP. A simple but effective 

improvement on UDT-LP is to use a global (across all 

attributes Aj ) threshold  for 

pruning. This gives UDT-GP. 

C. End-point sampling 

        As we will see later in Section VI, UDT-GP is very 

effective in pruning intervals. In some settings, UDT-

GP reduces the number of •”entropy calculations” 

(including the calculation of entropy values of split 

points and the calculation of entropylike lower bounds 

for intervals) to only 2.7% of that of UDT. 

         On a closer inspection, we find that many of these 

remaining entropy calculations come from the 

determination of end-point entropy values. In order to 

further improve the algorithm’s performance, we 

propose a method to prune these end-points. We can 

take a sample of the end-points (say 10%) and use their 

entropy values to derive a pruning threshold. This 

threshold might be slightly less effective as the one 

derived from all end-points, however, finding it requires 

much fewer entropy calculations. Incorporate this End-

point Sampling strategy into UDT-GP gives us our next 

algorithm UDT-ES. 

VI. EXPERIMENTS ON EFFICIENCY 

       The algorithms described above have been 

implemented in Java using JDK 1.6 and a series of 

experiments were performed on a PC with an Intel Core 

2 Duo 2.66GHz CPU. 

A. Execution Tim: We first examine the execution time 

of the algorithms, which is charted in Figure 4(a). We 

have given also the execution time of the AVG 

algorithm (see Section IV-A). Note that AVG builds 

different decision trees from those constructed by the 

UDT-based algorithms, and that AVG generally builds 

less accurate classifiers. The execution time of AVG 

shown in the figure is for reference only. From the 

figure, we observe the following general (ascending) 

order of efficiency: UDT, UDTBP, UDT-LP, UDT-GP, 

UDT-ES. The AVG algorithm, which does not exploit 

the uncertainty information, takes the least time to 

finish, but cannot achieve as high an accuracy compared 

to the distribution-based algorithms (see Section IV-C).  

           We remark that in the experiment, each pdf is 

represented by 100 sample points (i.e., s = 100). All 

UDT-based algorithms thus have to handle 99 times 

more data (except for the •”JapaneseVowel” data) than 

AVG, which only processes one average per pdf. 

B. Pruning Effectiveness 

          Next, we study the pruning effectiveness of the 

algorithms. Figure 4(b) shows the number of entropy 

calculations performed by each algorithm. As we have 

explained, the computation time of the lower bound of 

an interval is comparable to that of computing an 

entropy. Therefore, for UDT-LP, UDTGP, and UDT-

ES, the number of entropy calculations include the 

number of lower bounds computed. The figure shows 

that our pruning techniques introduced in Section V are 

highly effective. Indeed, UDT-ES reduces the number 

of entropy calculations to 0.56%.28% when compared 

with UDT. It thus achieves a pruning effectiveness 

ranging from 72% up to as much as 99.44%. As entropy 

calculations dominate the execution time of UDT, such 

effective pruning techniques significantly reduce the 

tree-construction time. 

VII. CONCLUSION 

        We have extended the model of decision-tree 

classification and tree-construction algorithms[3] to 

accommodate data tuples having numerical attributes 

with uncertainty described by arbitrary pdf•fs. 

Experiments show that exploiting data uncertainty leads 

to decision trees with remarkably higher accuracies. 

Performance is an issue, though, because of the 

increased amount of information to be processed. We 

have devised a series of highly effective pruning 

techniques to improve tree construction efficiency. 

Pruning by bounding and end-point sampling are novel 

pruning techniques. Although our novel techniques are 

primarily designed to handle uncertain data, they are 

also useful for building decision trees using classical 

algorithms when there are tremendous amounts of data 

tuples.  
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