

www.semargroups.org

ISSN 2319-8885

Vol.02,Issue.06,

July-2013,

Pages:413-418

Copyright @ 2013 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

A H/W Efficient 64-Bit Parallel CRC for High Speed Data Transactions
 P.ABDUL RASOOL

1
, N.MOHAN RAJU

2

1
Research Scholar, Kottam College of Engineering, Chinnatekur, Kurnool, AP-INDIA,

E-mail:abdul.rasool8@gmail.com.
2
Asst Prof, Kottam College of Engineering, Chinnatekur, Kurnool, AP-INDIA,

E-mail:mohanrajunese@gmail.com.

Abstract: High speed data transmission is the current scenario in networking environment. Cyclic redundancy check (CRC) is

essential method for detecting error when the data it is transmitted. Within the challenging speed of the transmitting data, and to

the synchronize with speed, it’s necessary to increase the speed of the CRC generation. Starting from the serial architecture to

be identified a recursive formula from which parallel design is to be derived. In this paper we can presents 64 bits parallel CRC

architecture based on F matrix within the order of generator polynomial is 32.When the Proposed design is hardware efficient

and required 50% less cycles to generate CRC within the same order of generator polynomial. Then the whole design is

functionally verified using Xilinx ISE Simulator.

Keywords: The Cyclic Redundancy Check, Parallel CRC and calculation, Linear Feedback Shift Register, The LFSR, and F

matrix.

I. INTRODUCTION

 Cyclic redundancy check is commonly used in data

communication and other fields such as the data storage and

the data compression, as a vital method for dealing with the

data errors that is [6]. Usually, then the hardware

implementation of CRC computations is based on the linear

feedback shift registers and (LFSRs), which handle the data

in the serial way. Though, the serial calculation of the CRC

codes cannot be achieving a high throughput. In this the

contrast is in the parallel CRC calculation can be

significantly increase the throughput of CRC computations.

For example, then the throughputs of the 32-bit parallel

calculation of CRC-32 that can be achieve several gigabits

per second [1.] However, that is still not enough for the high

speed application such as Ethernet networks. When it is the

possible solution is to process more bits in parallel; Variants

of CRCs are used for the applications like CRC-16 BISYNC

protocols, CRC32 in Ethernet frame for the error detection,

CRC8 in the ATM, CRC-CCITT in the X-25 protocol and

this disc storage, SDLC, and the XMODEM.

 Albertengo and Sisto [2], has to be proposed z-transform

based on the architecture for the parallel CRC, in which it’s

not possible to write synthesizable VHDL code. Braun et al

[4] presented an this approach is more suitable for FPGA

implementation, which has very complex and the analytical

proof. Another approach is based on Galois field has been

proposed by Shieh et al.[3]. Campobello [1], has presented

pre-calculated F matrix based on the 32 bit is the parallel

processing, which is doesn’t working if polynomial can be

change. In this paper, then the proposed architecture deal

with 64bit parallel processing based on the built in F matrix

generation; that it gives CRC with half number of cycles.

When this paper starts with the introduction of serial CRC

generation based on the LFSR.

II. SERIAL CRC

 Traditional method for generating serial CRC is based

on linear feedback shift registers (LFSR). The main

operation of LFSR for CRC calculations is nothing more

than the binary divisions.

Fig1. Basic LFSR Architecture [2].

mailto:venuturupallivijayendra@gmail.com

P.ABDUL RASOOL, N.MOHAN RAJU

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:413-418

 When these binary divisions are generally can be

performed by the sequence of shifts and subtractions. In

this the modulo 2 arithmetic the addition and subtraction

are equivalent to bitwise XORs (denoted by “⊕” in this

paper) and the multiplication is equivalent to AND

(denoted by “⊗”in this paper). Figure 1shows the

illustrates of the basic architecture of the LFSRs for serial

CRC calculation.

 As we can shows in fig.1 d is the serial data input, and

X is the present state (generated CRC), when the ' X is the

next state and p is the generator polynomial. Working of

the basic LFSR architecture that can be expressed in terms

of the following equations.

 ⊗ d

 ⊗ (1)

 Then the generator polynomial for the CRC-32 is as

follows

 + + + + + +

 + + + + + + ; (1.1)

 We can extract these coefficients of G(x) and we can

represent in binary form as

 …………………, }

 (1.2)

 Then the Frame Check sequence (FCS) will be

generated after (k+m) the cycle, where k indicates the

number of data bit and m indicates the order of the

generator polynomial. When the 32 bits serial CRC if in

order of generator polynomial is 32 then these serial CRC

will be generated after 64 cycles.

III. PARALLEL CRC

There are different techniques for parallel CRC generation

given as follow.

1. A Table-Based Algorithm for Pipelined CRC

Calculation.

2. Fast CRC Update.

3. F matrix based parallel CRC generation.

4. Unfolding, Retiming and pipelining Algorithm.

 LUT base architecture provides lower memory LUT

and by the high pipelining Table base architecture has

inputs, LUT3, LUT2, and LUT1. Then the LUT3 contains

CRC values for the input that can be followed by 12 bytes

of zeros, LUT2 8 bytes, and LUT4 4 bytes. When basically

this algorithm it can be obtain for the higher throughput.

Then the main problem can be with the pre-calculating

CRC and store it in LUT so, that the every time will be

required to change the LUT when this changing is the

polynomial. When this pipelining algorithm is used to

reducing the critical path by adding the delay elements.

Fig2. LUT based architecture [5]

 Parallel processing is used to increasing the

throughput by producing the no. of output at the same time.

Retiming used to be increasing the clock rate of the circuit

by reducing the computation time of the critical path.

 In this fast CRC update technique is not required to

calculate the CRC each time for all the data bits, instead of

that the calculating CRC for only those bits that are

change. There are different approaches to generate the

parallel CRC having there the advantages and the

disadvantages for each technique. For this the table is

based on the architecture can be required to be pre-

calculated LUT, so, that it will not used for the generalized

CRC, fast CRC update techniques are used to required

buffer to store the old CRC and data. In unfolding the

architecture can be increases the no. of iteration bound.

Then the F matrix based on the architecture can be more

simple and then the low complex. Below this algorithm

and its’ implementation is given.

Fig3. Fast CRC update architecture [7]

A H/W Efficient 64-Bit Parallel CRC for High Speed Data Transactions

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:413-418

A. Algorithm for F matrix based architecture.

 Algorithm and Parallel architecture for the CRC generation

based on the F matrix is discussed in this section. As we can

be shown in fig2. It is the basic algorithm for F matrix is

based on the parallel CRC Generation

Fig4. The Algorithms for F matrix based architecture

 Parallel data input and each element of the F matrix,

which is generated and from given generator polynomial is

the anded, result of that will be xoring with present state of

the CRC checksum. Then the final result are generated after

(k+ m) /w cycle.

B. F Matrix Generation

 The F matrix is generated from the generator polynomial as

per (2).

 (2)

 Where,{p0……pm-1}is the generator polynomial. For

example, then the generator polynomial for CRC4 is {1, 0,

0, 1, 1} and w bits are parallely processed.

 (3)

Here w=m=4, for that F w matrix calculated as follow.

 (4)

C. Parallel architecture

 Parallel architecture is based on the F matrix that can be

illustrated in fig. 2. As shown in fig.2, d is the data that is

parallel processed (i.e 32bit), ' X is next state, X is current

state (generated CRC), F(i)(j) is the Ith row and jth column

of F w matrix. If X = [xm-1…..x1x0]T is utilized to denote

the state of the shift registers, in this linear system theory,

the state equation for the LFSRs can be expressed in

modular 2 arithmetic as follow.

 ⊗ (5)

 Where, X(i) represents the ith state of the registers,

X(i +) denotes the (i + 1) th state of the registers, d denotes

the one-bit shift-in serial input. F is an (m x m) matrix and

G is a (1 x m) matrix

 (6)

 Furthermore, if the F and G are substituted by this

Equations (4) and (5), we can rewrite this equation (4) in

the matrix form as:

 (7)

Finally, equation (6) can be written in matrix form as

 ⊗X (+) d (8)

 Equation (7) is can be illustrated in fig. 2. If the w bits

are parallel and then the processed, then CRC will be

generated after (k+ m)/w Equation (8) can be expanded for

CRC4 given below.

 (+) (+) (+)

 (+) (+)

 (+) (+)

 (+) (+) (+) (+) (9)

 Fig.5.demonstrates an example of parallel CRC

calculation with multiple input bits w = m = 4. Then the

dividend is divided into the three 4-bit fields, that can be

acting as the parallel input vectors D(0),D(1),D(2), and

P.ABDUL RASOOL, N.MOHAN RAJU

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:413-418

respectively. Then the initial state is X(0) = [0 0 0 0]T.

From Equation (8), we have,

 ⊗ (+) D(0)

 ⊗ (+)

 (+) (10)

Fig5. Parallel calculation of CRC-32 for 32bit [5].

 Property of the F w matrix and the previously

mentioned fact that Equation (8) can be regarded as a

recursive calculation of the next state X’ by matrix F w,

current state X and then the parallel input D, it make the

32-bit parallel input vector it is more suitable for any

length of messages besides the multiples of the 32 bits.

Remember that the length of this message is byte-based. If

then the length of this message is not in then the multiple

of 32, after that the sequence of 32-bit parallel calculation,

and then the final remaining number of bits of the message

could be 8; 16,or 24. For all these situations, and an

additional parallel calculation w = 8; 16; 24 is needed by

choosing the corresponding Fw. Since F w can be easily to

derived from F 32, then the calculation can be performed

by using this Equation (8) within the same circuit as 32-bit

parallel calculation, then only difference is the F w matrix.

 If the length of the message is not then the multiple

number of the parallel processing bits w = 4 i.e. data bit is

11011101011. Then this the last two more bits (D (3)) need

to be calculated after getting X (12). Therefore, F 2 must

be obtained from the matrix F4, and the extra two bits are

stored at the lower significant bits of the input vector D.

Equation (8) that can be applied to calculate the final state

X (14), which is the CRC code. Therefore, only an extra

cycle is needed for calculating the extra bits if the data

message length is not the multiple number of w, then the

parallel processing bits. It is the worth to notice that in

CRC-32 algorithm, then the initial state of the shift

registers is preset to all `1's. That therefore, X(0) =

0xFFFF. However, the initial state X (0) does not affect

that the correctness of this design. In order to obtain for the

better understanding, the initial state X (0) is still set to

0x0000 when the circuit is implemented.

IV. PROPOSED PARALLEL ARCHITECTURE

 In this the proposed architecture w= 64 bits are

parallely processed and order of generator polynomial is

m= 32 as shown in fig. 3. As we can discussed in this

section 3, if 32 bits are processed by parallely then CRC-

32 will be generated after m)/w (k+ cycles. If we can

increase the number of bits to be processed parallely, and

then the number of cycles required to calculate the CRC

can be reduced. Then the Proposed architecture can be

realized by below equation.

 X temp ⊗ D (+)

 ⊗ X temp (11)

Where,

D (0 to 31) =first 32 bits of parallel data inputs

D (0 to 63) = next 32 bits of parallel data inputs

X’=next state

X=present state

Fig6. Block diagram of 64-bit parallel calculation of CRC-

32.

A H/W Efficient 64-Bit Parallel CRC for High Speed Data Transactions

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:413-418

 When this proposed architecture di is the parallel

input and F(i) (j) is the element of F 32 matrix that can be

located at ith row and jth column. As we can shown in

figure then the 3 input data bits d0….d31anded with each

row of F W matrix and result will be xored individually

with d32, d33…….d63. Then each xored results is then

xored with in the ' X(i) in terms of CRC32. Finally X will

be the CRC generated after m)/w (k+ cycle, where w=64.

V. RESULT AND ANALYSIS

 Then this proposed architecture is the synthesized in the

Xilinx-9.2i and simulated in the Xilinx ISE Simulator,

which is required half cycle then the previous 32bit

design[1][5]. In this the programming in VHDL by

specifying only generator polynomial, it is directly gives F

matrix that can be useful for parallel CRC generation that is

not available in this the previous methods [1][5][6].

Hardware utilization is compared in this table I for different

approaches for the different parameter are like LUT, CPD

and cycles.

TABLE I. Comparison of LUT, Clock cycle and CPD

 From this table we can observe that, the architecture

proposed by [1][8] it can be require for these 17 clock

cycles to generate CRC as per equation (k+ m)/w and for

proposed architecture can be required only 9 cycles, CPD

for this proposed architecture is less than the architecture

[1][8],only the disadvantage for proposed architecture is the

no. of LUT get increased, so that the area also get increase .

Fig7. Generated waveform for proposed 64bit architecture

 When the proposed CRC-32 architecture with the 64bit

parallel bit simulated in the Xilinx 9.2i ISE simulator. When

the input data bit to system is FFFFFFFFFFFFFFFF (64

bit). The final result can be obtain after m)/w (k+ cycle for

32-bit residual will be 7DC225CD (hexadecimal form).

Fig8. Generated waveform for proposed 32bit architecture

P.ABDUL RASOOL, N.MOHAN RAJU

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:413-418

VI. CONCLUSION

 The32bit parallel architecture can be required 17 ((k +

m)/w) clock cycles for 64 byte data [1] [5]. When this the

Proposed design (64bit) is also can be required only 9

cycles to generate the CRC with the same order of

generator polynomial. So, it is drastically reduces for the

computation time to 50% and that the same time increases

the throughput. Pre-calculation of F matrix is not required

in proposed architecture. When this is the compact and

easy method for fast CRC generation.

VII. REFERENCES

[1] Hitesh H. Mathukiya, Naresh M. Patel " A Novel

Approach for Parallel CRC generation for high speed

applications, International Conference on Communication

Systems and Network Technologies, Oct.2012

[2] Albertengo, G.; Sisto, R.; , "Parallel CRC generation,"

Micro, IEEE , vol.10, no.5, pp.63-71,Oct1990.

[3] M.D.Shieh et al., “A Systematic Approach for Parallel

CRC Computations,” Journal of Information Science and

Engineering, May 2001.

[4] Braun, F.; Waldvogel, M.;"Fast incremental CRC

updates for IP over ATM networks," High Performance

Switching and Routing, 2001 IEEE Workshop on , vol., no.,

pp.48-52, 2001

[5] Weidong Lu and Stephan Wong, “A Fast CRC Update

Implementation”, IEEE Workshop on High Performance

Switching and Routing ,pp. 113-120, Oct. 2003.

[6] S.R. Ruckmani, P. Anbalagan, “ High Speed cyclic

Redundancy Check for USB” Reasearch Scholar,

Department of Electrical Engineering, Coimbatore Institute

of Technology, Coimbatore-641014, DSP Journal, Volume

6, Issue 1, September, 2006.

[7] Yan Sun; Min Sik Kim; , "A Pipelined CRC Calculation

Using Lookup Tables," Consumer Communications and

Networking Conference (CCNC), 2010 7th IEEE , vol., no.,

pp.1-2, 9-12 Jan. 2010

[8] Sprachmann, M.;, "Automatic generation of parallel

CRC circuits," Design & Test of Computers, IEEE , vol.18,

no.3, pp.108-114, May 2001.

Author’s Profile:

P Abdul Rasool,

II Mtech,

Kottam College of Engineering,

Chinnatekur

Kurnool.

E-mail:abdul.rasool8@gmail.com

N Mohan Raju,

Assistant Professor,

Kottam College of Engineering,

Chinnatekur, Kurnool,

E-mail:Mohanrajunese@gmail.Com

mailto:abdul.rasool8@gmail.com
mailto:Mohanrajunese@gmail.Com

