

www.semargroup.org,

www.ijsetr.com

ISSN 2319-8885

Vol.03,Issue.05,

April & May-2014,

Pages:0735-0738

Copyright @ 2014 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Design of Arithmetic Logic Unit using Finite State Machine in Verilog
SHASHANK KAITHWAS

1
, P.K.JAIN

2
, D.S.AJNAR

3

1
PG Scholar, Dept of Electronics & Instrumentation, S.G.S.I.T.S, Indore, India,

E-mail: shashankkaithwas09@gmail.com.
2
Assoc Prof, Dept of Electronics & Instrumentation, S.G.S.I.T.S, Indore, India.

 3
Assoc Prof, Dept of Electronics & Instrumentation, S.G.S.I.T.S, Indore, India.

Abstract: This paper present design concept of Arithmetic Logic Unit (ALU). Design methodology has been changing from

schematic design to HDL based design. We proposed Arithmetic Logic using State Machine in Verilog HDL based design. The

State Machine can be started from any State and can jump on any state in between. Functionalities are validated through

synthesis and simulation process. Besides verifying outputs, the timing diagram and interfacing signals are also tracked to

ensure that they adhere to the design specification. ALU using State Diagram in Verilog language fulfils the needs for different

high performance applications.

Keywords: Arithmetic Logic Unit (ALU), Hardware Description Language (HDL).

I. INTRODUCTION

 The ALU, or the arithmetic and logic unit is the section

of the processor that is involved with executing operations

of an arithmetic or logical nature. In ECL, TTL and CMOS,

there are available integrated packages which are referred to

as arithmetic and logic units (ALU). The logic circuitry in

this units is entirely combinational (i.e. consists of gates

with no feedback and no flip-flops).The ALU is an

extremely versatile and useful device since, it makes

available, in single package, facility for performing many

different logical and arithmetic operations. Arithmetic

Logic Unit (ALU) is a critical component of a

microprocessor and is the core component of central

processing unit. ALU can perform various logic operations

or different Arithmetic instructions include addition,

subtraction, While logic instructions include Boolean

comparisons, such as AND, OR, NAND, NOR, XOR and

NOT operation.

II. STATE DIAGRAM DESCRIPTION

 In the State Diagram let us assume that we are in the

State0 then if the RESET is set i.e. logic 1 then the Next

State will be State0 and if the RESET is set to logic 0 then

depending on the value of START the Next State will be

change. Also we can jump from a particular State to any

State and if the value of START does not change then the

Next State will not change and the Machine will remain in

same State as shown in figure 1. Each State has a particular

operation as mention in the Verilog code. Arithmetic and

logic unit consists of two blocks for different operations-

 Arithmetic operations.

 Logical operations.

Figure1: State Diagram of ALU.

Addition and subtraction: These two tasks are performed

by constructs of logic gates, such as half adders and full

adders. While they may be termed 'adders', with the aid of

they can also perform subtraction via use of inverters and

'two's complement' arithmetic. A binary adder-subtractor is

a combinational circuit that performs the arithmetic

operations of addition and subtraction with binary numbers.

Connecting n full adders in cascade produces a binary adder

for two n-bit numbers.

Logical operations: Further logic gate s are used within the

ALU to perform a number of different logical tests,

SHASHANK KAITHWAS, P.K.JAIN, D.S.AJNAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.05, April & May-2014, Pages: 0735-0738

including seeing if an operation produces a result of zero.

Most of these logical tests are used to then change the

values stored in the flag register, so that they may be

checked later by separate operations or instructions.

III. VERILOG CODE OF ALU

The Verilog Code of ALU for the various state is given

below:

module alu (clk, rst, start, a, b, zout);

input clk, rst;

input [2:0] start;

wire [2:0] start;

input [3:0] a;

wire [3:0] a;

input [3:0] b;

wire [3:0] b;

output [3:0] zout;

reg [3:0] zout;

parameter

state0=0,state1=1,state2=2,state3=3,state4=4,state5=5,state6

=6,state7=7;

reg [2:0] state, nxt_st;

always @ (state or start)

begin: next_state_logic

case (state)

state0: begin

if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else nxt_st=state0;

end

state1: begin

if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else nxt_st=state1;

end

state2: begin

if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else nxt_st=state2;

end

state3: begin

if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else nxt_st=state3;

end

state4: begin

if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else nxt_st=state4;

end

state5: begin

if (start==6) nxt_st=state6;

else if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else nxt_st=state5;

end

state6: begin

if (start==7) nxt_st=state7;

else if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else nxt_st=state6;

end

state7: begin

if (start==0) nxt_st=state0;

else if (start==1) nxt_st=state1;

else if (start==2) nxt_st=state2;

else if (start==3) nxt_st=state3;

else if (start==4) nxt_st=state4;

else if (start==5) nxt_st=state5;

else if (start==6) nxt_st=state6;

else nxt_st=state7;

end

endcase

end

always @ (posedge clk or posedge rst)

begin: register_generation

if(rst)state=state0;

else state=nxt_st;

end

Design of Arithmetic Logic Unit using Finite State Machine in Verilog

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.05, April & May-2014, Pages: 0735-0738

always @ (state)

begin: output_logic

case(state)

state0:zout=a + b;

state1:zout=a - b;

state2:zout=a | b;

state3:zout=a & b;

state4:zout=~(a & b);

state5:zout=~(a | b);

state6:zout=a ^ b;

state7:zout=a ^ ~b;

default:zout = 4'b0000;

endcase

end

endmodule

IV. ALU SPECIFICATIONS

TABLE 1

V. SIMULATION RESULTS

 Design is verified through simulation, which is done in a

bottom-up fashion. Small modules are simulated in separate

test benches before they are integrated and tested as a

whole. All four arithmetic operations available in the design

are tested with the same inputs. The sequence of operations

done in the simulation is addition. The results of operation

on the test vectors are manually computed and are referred

to as expected result. By simulation for a and b where a = 4

& b = 2, zout gives following results:

Figure2:

VI. CONCLUSION

 In this paper, we have proposed efficient Verilog coding

verification method. We have also proposed several

algorithms using different design levels. Our proposals have

been implemented in Verilog and verified using Mentor

Graphics using Questa Sim Simulator 10.2a. We can

increase the number of operation by simply adding the

number of States in the design. This ALU design using

Verilog is successfully designed, implemented, and tested.

Currently, we are conducting further research that considers

the further reductions in the hardware complexity in terms

of synthesis and finally download the code into Altera

SPARTEN-3E: FPGA chip on LC84 package for hardware

realization.

VII. REFERENCES

[1] J.Bhaskar, Verilog HDL Synthesis, A Practical primer.

[2] Douglas j.Smith, HDL Chip Design: A Practical guide

for Desigining, Synthesizing and Simulation ASICs and

FPGAs using VHDL or Verilog. JUNE 1996.

[3] James M. Lee, Verilog Quickstart. Hardcover Published

by Kluwer Academic Pub. MAY 1997.

[4] Palnitkar, Samir. Verilog HDL - A Guide to Digital

Design and Synthesis.

[5] Fraunhofer IIS, “From VHDL and Verilog to

System”.www.iis.fraunhofer.de/bf/ic/icdds/arb_sp/vhdl.

[6] Shikha khurana, Kanika kaur. “IMPLEMENTATION

OF ALU USING FPGA” International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS).

Volume 1, Issue 2, July – August 2012.

SHASHANK KAITHWAS, P.K.JAIN, D.S.AJNAR

International Journal of Scientific Engineering and Technology Research

Volume.03, IssueNo.05, April & May-2014, Pages: 0735-0738

[7] Jiang Hao, Li Zheying, “FPGA design flow based on a

variety of EDA tools” in Micro-computer information,

2007(23)11-2:201-203.

[8] Bob Zeidman, Verilog Designer’s Library. Prentice hall.

VII. ACKNOWLEDGMENT

We gratefully acknowledge the Almighty GOD who gave

us strength and health to successfully complete this venture.

We wish to thank lecturers of our college for their helpful

discussions. We also thank the other members of the

Verilog synthesis group for their support.

Author’s Profile:

Shashank kaithwas is currently

persuing M.Tech with specialization

in Microelectronics and VLSI

Design at S.G.S.I.T.S, Indore, India.

He received his Bachelor degree in

Electronics and Instrumentation

Engineering from Acropolis Institute

of Technology and Research, Indore.

His field of interest includes Digital

VLSI Design, EDA, RTL simulation

and synthesis, Verilog HDL.

P.K. Jain received the B.E. degree

in Electronics and communication

Engineering from D.A.V.V.

University, India in 1987 and M.E.

Degree in Digital Techniques &

Instrumentation Engineering from

Rajiv Gandhi Technical University

Bhopal, India in 1993. He has been

teaching and in research profession

since 1988. He is now working as

Associate Professor in Department of Electronics &

Instrumentation Engineering, S.G.S.I.T.S.

D.S.Ajnar received the B.E. degree

in Electronics and Communication

Engineering from D.A.V.V

University, India in 1993 and M.E.

Degree in Digital Techniques &

Instrumentation Engineering from

Rajiv Gandhi Technical University

Bhopal, India in 2000. He has been

teaching and in research profession

since 1995. He is now working as

Associate Professor in Department of, Electronics &

Instrumentation Engineering S.G.S.I.T.S, Indore, India. His

interest of research is in Designing of analog filter and

Current-Conveyor.

