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Abstract: The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and 

microprocessor data path units. Such, as the extensive research continues to be focused on improving the power-delay and then 

performance of the adder. In the VLSI implementations and the parallel-prefix adders (also known as carry-tree adders) are 

known to have the best performance. However, this performance advantage does not translate directly into FPGA 

implementations due to constraints on logic block configurations and then routing overhead. In this paper we can investigates 

three types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, and then spanning tree adder) and compares them to the 

simple Ripple Carry Adder (RCA). These designs of varied bit-widths were implemented on a Xilinx Virtex5 FPGA and delay 

values were taken from static timing analysis of synthesis results obtained from Xilinx ISE design suite 10.1. Due to the 

presence of the fast carry-chain, when the RCA designs are we can exhibit better delay performance up to 64 bits. The carry- 

tree adders have a speed advantage over the RCA as bit widths approach 256. 

Keywords: Ripple Carry Adder (RCA) and Carry Skip Adder (CSA), FPGA implementations, power-delay performance, carry 

tree Adders, VLSI designs, digital signal processors (DSP). 

I. INTRODUCTION 

          The binary adder is the critical element in most digital 

circuit designs including digital signal processors (DSP) and 

microprocessor units. And such as, extensive research 

continues to be focused on improving the power-delay 

performance of the adders. VLSI implementations, parallel-

prefix adders are known to have the best performance. 

Reconfigurable logic such as Field Programmable Gate 

Arrays (FPGAs) has been gaining in popularity in recent 

years because it offers improved performance in terms of 

speed and power over DSP-based and microprocessor-based 

solutions for many practical designs involving mobile DSP 

and telecommunications applications and a significant 

reduction in development time and cost over Application 

Specific Integrated Circuit (ASIC) designs.  

       The power advantage is especially important with the 

growing popularity of mobile and portable electronics, 

which make extensive use of DSP functions. However, 

because of the structure of the configurable logic and 

routing resources in FPGAs, parallel-prefix adders will have 

a different performance than VLSI implementations. In 

particular, most modern FPGAs employ a fast-carry chain  

 

Which optimizes the carry path for the simple Ripple Carry 

Adder (RCA).      In this paper, the practical issues involved 

in designing and implementing tree-based adders on FPGAs 

are this work was supported in part by NSFLSAMP and 

UT-System STARS awards. The FPGA ISE synthesis 

software was supplied by the Xilinx University program 

described.                                                                                 

      An efficient testing strategy for evaluating the 

performance of the adders is discussed. Then the several 

tree-based adder structures are implemented and 

characterized on a FPGA and compared with the Ripple 

Carry Adder (RCA) and the Carry Skip Adder (CSA). 

Finally, some conclusions and suggestions for improving 

FPGA designs to enable better tree-based adder 

performance are given. Parallel-prefix structures are found 

to be common in high performance adders because of the 

delay is logarithmically proportional to the adder width. 

Such structures can usually be divided into three stages 

1. Pre-computation 

mailto:venuturupallivijayendra@gmail.com
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2. Prefix tree  

3. Post-computation 

II. PARALLEL-PREFIX ADDITION 

        When the binary adder is the critical element in most 

digital circuit designs including digital signal processors 

(DSP) and then microprocessor data path units. Such, as 

the extensive research continues to be focused on 

improving the power delay performance of the adder. In 

the VLSI implementations, and then parallel-prefix adders 

are known to have the best performance. Reconfigurable 

logic such as Field Programmable Gate Arrays (FPGAs) 

has been gaining in popularity in recent years because it 

offers improved performance in terms of speed and power 

over DSP-based and microprocessor-based solutions for 

many practical designs involving mobile DSP and 

telecommunications applications and a significant 

reduction in development time and cost over Application 

Specific Integrated Circuit (ASIC) designs. The power 

advantage is especially important with the growing 

popularity of mobile and portable electronics, which make 

extensive use of DSP functions.  

         However, because of the structure of the configurable 

logic and routing resources in FPGAs, parallel-prefix 

adders will have a different performance than VLSI 

implementations. In particular, most modern FPGAs 

employ a fast-carry chain which optimizes the carry path 

for the simple Ripple Carry Adder (RCA). In this paper, 

the practical issues involved in designing and 

implementing tree-based adders on the FPGAs. An 

efficient testing strategy for evaluating the performance of 

these adders is discussed. Several tree-based adder 

structures are implemented and characterized on a FPGA 

and compared with the Ripple Carry Adder (RCA) and the 

Carry Skip Adder (CSA).  

 

Fig.1. Block Diagram of Prefix addition. 

        Finally, some conclusions and suggestions for 

improving FPGA designs to enable better tree-based adder 

performance are given. The problems are involved in 

FPGA implementation are investigated and the possible 

FPGA architecture which can make the Carry Tree Adder 

to provide high performance over the Simple adder it can 

be explored. Then the possible trade-offs like area, power, 

delay, interconnect count and fan-out involved in the 

adders are examined.  

       There are three stages the addition it consists of the 

following computations:  

• Pre-computation:  

      Gm:n=An and Bn, G0=cin; Pm:n=An xor Bn, P0=0;           (1) 

• Prefix-computation:  

(Gm, Pm) ο (Gn, Pn) = (Gn:k + Pn:k· 

Gk-1:n, Pn:k·Pk-1:j) (or) Gm:n=Gn:k+Pn:k· Gk-1:n Pm:n=Pn:k·Pk-1   (2) 

• Post-computation:  

                         Sn=Pn xor Gn-1:0                                        (3) 

III. SPARSE KOGGE-STONE ADDER GENERATOR 

        This generates Verilog code for adders with large 

numbers of bits. While a complete adder would produce 

the output of all bits, this just outputs a series of carry bits 

at fixed intervals. These can be used as the carry-in bits for 

a series of smaller adders. This is useful in particular for 

FPGAs, where small ripple-carry adders can be much 

faster than general-purpose logic thanks to fast connections 

between neighbouring slices. This allows a large adder to 

be composed of many smaller adders by generating the 

intermediate carries quickly. 

A. Options 

Bits in adder: 
128

 

Bits between carry outputs: 
16

 

 

Background: When we add numbers on paper, we would 

do this in our normal base 10 counting system by adding 

together the digits in the smallest place first, then moving 

up until we've reached the largest digit. If any pair of digits 

added together reaches 10, the 10 gets taken out and added 

to the next highest place, where it's equivalent to a 1 digit 

at that magnitude.  

 

When we add in base 10, we add pairs of digits and carry up 

to the next place. 
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      In binary, we do exactly the same thing. In binary 

though, we only have 0s and 1s in each place. We add 

together the digits and any carry from the previous position, 

and if put together they reach 2, the 2 is taken out and 

carried to the next place up, where it's equivalent to a 1 digit 

at that magnitude. We get a very simple table which shows 

what the value and carry are for any combination:  

First 

Digit 

Second 

Digit 

Carry 

from 

previous 

Total 

Carry 

to next 

place 

Result 

in this 

place 

0 0 0 0 0 0 

0 1 0 1 0 1 

1 0 0 1 0 1 

1 1 0 2 1 0 

0 0 1 1 0 1 

0 1 1 2 1 0 

1 0 1 2 1 0 

1 1 1 3 1 1 

       This table is easily implemented with a few digital 

gates, and by stringing together a whole series of these from 

the smallest to the largest place, we get a "ripple carry" 

adder, which adds exactly like we would on paper. Gates, 

however, take a certain amount of time to produce a stable 

output. While on a much smaller time scale than we're used 

to dealing with, gate delay is what constrains the speed a 

processor or IC can run at. The ripple carry adder is so 

named because the carry from the smallest bit affects the 

output and carry of the bit one place up, and as each place is 

worked out the correct result appears as a "ripple" from 

smallest to largest bit.  

      When measuring the time it takes to do a calculation 

using gates, we have to add together the gate delays and find 

the longest route through the gates to a result we depend on. 

Since in the adder the output of each bit depends on the 

carry from the next bit down, we have a long chain where 

every bit, including the largest, is affected by the input to 

the smallest bit. The longest path here is from the input to 

the smallest place to the output of the largest place of the 

result. This is proportional to the number of bits - doubling 

the number of bits will double the time it takes to add the 

numbers together. Ripple-carry adders for large numbers 

can take a long time to stabilize as a result.  

        To get around this problem and calculate faster, we can 

use the idea that the carry behavior of any stretch can be 

described by "propagate" and "generate" flags. A stretch in 

the addition, which could be just a single place or a range 

from one to another, can be described by these behaviors.  

 

Generate blocks always produce a carry bit. Propagate 

blocks produce a carry if and only if they get a carry in. 

Blocks can do neither - will always produce a 0 carry. 

        First, we add together all the digits individually 

without any carry to work out the generate and propagate 

behaviors for each individual place in the sum. If those 

places would generate a carry, we mark them with a 

"generate". If they don't carry over, but adding on another 1 

would make them create a carry, we mark them with 

"propagate". A bit marked as propagate will create a carry 

bit out only if it gets a carry bit in.  

      0 + 0 = 0, no carry. 0 + 1 doesn't carry either - doesn't 

generate or propagate. 

      0 + 1 = 1, no carry. 1 + 1 would create a carry - doesn't 

generate but does propagate. 

      1 + 0 = 1, same as last line 

      1 + 1 = 0, carry 1. 0 + 1 doesn't carry - generates but 

doesn't propagate. 

 

Each place in the sum becomes a stretch 1 place long. 

     Two adjacent stretches can be combined together in to a 

larger range, which will propagate if both blocks within it 

propagate. It will generate if either the higher place block 

generates, or the lower place block generates and the larger 

place block propagates the carry.  
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     We can combine two stretches next to each other to 

form a larger range. We combine together pairs of places 

using those rules to find behavior of larger stretches.  

 

Combined ranges - each 2 places long. 

       By combining stretches together, we get the behaviour 

of large blocks. In the first layer, we could combine 

together pairs of places, in the second layer we combine 

together the pairs to form ranges of 4, and could continue 

moving up to 8, 16 and so on. The gate delay through this 

is the depth of the tree, which now only increases by a 

level every time the number of bits in the sum doubles. 

With ripple carry, the amount of time would double if the 

number of bits doubled.  

 

We can combine blocks to get the behavior of the whole 

range. 

        So what use is this? We only have these "propagate" 

and "generate" values for the ranges here. The key is that if 

we have a range from the smallest bit up to any point, the 

carry out of the top bit is 1 if and only if the range 

generates. In our example above, we have four ranges 

which extend all the way to the least significant bit on the 

right, giving us the carries out of the 1st, 2nd, 4th and 8th 

bit from the right.  

 

For a range from the least significant bit up to any other 

bit, the generate flag tells you whether there is a carry. 

      That completes the theory behind how tree adders 

fundamentally work. In practice, we often want to have 

carries out of places other than powers of 2 so build the 

tree so that the ranges overlap at each level. There are 

many different designs of how to arrange the tree to create 

carries at different points. In particular, if we get the carry 

out of every place then we can recombine them with the 

original "propagate" values for the next place up to get the 

numbers added. The way these different designs tend to be 

drawn is as a tree, where we mark each range at the point 

where it ends. Each range is built from the previous range 

to end at that position, and another adjacent range.  

 

     Standard tree notation, with two of the ranges 

highlighted. The red and blue trees have the links you 

would follow to find where they start and end highlighted 

in their color. The red gets all the way to 0- gives us the 

carry out of its column. 

     Notice that we can still only combine ranges which are 

next to each other - the red range combines the blue range 

and another which begins the place after the blue one ends. 

For details of specific designs I'd recommend Hardware 

algorithms for arithmetic modules. This uses the tree 

notation described above.  

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
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      This page generates adders based on the Kogge-Stone 

tree design, but rather than generating carries from every bit 

(as the original does), this trims it down to provide only a 

few at regular intervals. This attempts to allow you to strike 

a balance between fast but complicated trees, which can 

have lots of connections crossing over each other and be 

difficult to lay out in hardware, and slower but simpler 

ripple-carry adders, which can actually be faster in FPGA 

designs.  

III. CARRY TREE ADDERS 

        The various types of carry tree adders are shown in 

Fig.2. Each carry tree adder consists of three parts. They 

are: Upper part, Middle part, Lower part. Using these parts 

the carry tree adders computes N outputs from N inputs as 

shown in Fig.1. The Upper part generates and propagates 

the carry signal from the input to the prefix stage using the 

formula given in equation (4). The propagated and 

generated carry signals are combined using the associate 

operator “ο”. This operation is performed in the middle part 

using the formula given in equation (5). The Middle part 

consists of prefix cells such as black cells, grey cells and 

white buffers [1]. The arrangement of these prefix cells in 

different order results in various types of Carry Tree adders. 

Where the carry signals need not to be propagated. Such 

operations are performed by grey cells. The grey cells 

generate the carry signal only. Black cell generates and 

propagates the carry signal. There are some places the white 

buffers are used to reduce the loading effect for the further 

stages.  

         The Lower part generates the overall sum using the 

formula given in equation (6). Depends on the arrangement 

of prefix cells, the carry tree adders involves in tradeoffs 

like area, power, delay, interconnect count, fan-out and 

logic depth [3 & 4]. Fig.2 (a) shows the Brent-Kung the 

dark black line in the figure indicates the critical path of the 

adder. The critical path for Han-Carlson and Kogge-Stone 

are less. So these two adders are expected to be the fastest 

adder. The power utilized by all the Carry Tree Adder is 

more than the Simple Adder. 

 

(a)Brent Kung 

 

(b) Kogge Stone 



E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR 

International Journal of Scientific Engineering and Technology Research 

Volume. 02,IssueNo.06, July-2013, Pages:467-479 

minimum area and maximum logic depth. Due to the 

maximum logic depth, the delay of this adder is expected to 

be high. Fig.2 (b) shows the Kogge-Stone adder. Adder. It is 

designed in such a way that it provides it provides 

maximum interconnect count and area but minimum logic 

depth and fan-out. Ladner-Fischer adder as shown in Fig.2 

(c) provides minimum logic depth with improved area. Han-

Carlson adder as shown in Fig. 2(d) provides minimum 

logic depth and minimum interconnect count. 

 

 

(c) Lander Fischer 

 

(d)Han Carlson  

Fig.2. (a-f) Carry Tree adders 

         Simple adder is designed using Verilog HDL „+‟ 

operator. The carry chain structure on FPGA makes Simple 

Adder to provide high performance. But this is not an 

efficient adder for VLSI implementation. In this paper, 

Carry Tree Adder is compared with Simple Adder for both 

ASIC and FPGA implementation. Parallel-prefix adders, 

also known as carry tree adders and pre compute the status 

and generate signals. These signals are variously combined 

using the fundamental carry operator (fco).  

                      (4) 

       Due to associative property of the fundamental carry 

operator, these operators can be combined and different 

ways to perform various adder structures. For, example the 

four-bit carry-look ahead generator is given by: 

                      (5) 

     A simple rearrangement of the order of operations 

allows equal operation; perform in a more efficient tree 

structure for this four bit example: 

                  (6) 

         It is readily apparent that a key advantage of the tree-

structured adder is that the critical path due to the carry 

delay is on the order of log2N for an N-bit wide adder. 

Then the arrangement of the prefix work connection gives 

rise to various families of adders. Then the discussion of 

the various carry tree structures, 
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Fig.3. (a) 16 bit Kogge-Stone adder and (b) sparse 16-bit Kogge-Stone adder. 

        For this study, the focus is on the Kogge-Stone adder, 

known for having minimal logic depth and fan out (see Fig 

3(a)). Here we designate BC as the black cell which 

generates the ordered pair in equation (5); the gray cell 

(GC) generates the left signal only, following .The 

interconnect area is known to be high, but for an FPGA 

with large routing overhead to begin with, this is not as 

important as in a VLSI implementation. The regularity of 

the Kogge-Stone prefix network has built in redundancy 

which has implications for fault-tolerant designs .The 

sparse Kogge-Stone adder, shown in Fig 1(b), is also 

studied. This hybrid design completes the summation 

process with a 4 bit RCA allowing the carry prefix network 

to be simplified. 

      Another carry-tree adder known as the spanning tree 

carry-look ahead (CLA) adder is also examined .Like the 

sparse Kogge-Stone adder, this design change with 4-bit 

RCA. it is interested to compare with  the performance of 

this adder with the sparse and regular Kogge-Stone adders. 

These also of interest for the spanning tree CLA is its 

testability features. 

 

Fig. 4. Spanning Tree Carry Look ahead Adder (16 bit) 
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IV.RESEARCH AND PROPOSED WORK 

        The different types of carry tree adders are discussed 

in [4]. In [5], the authors implemented different types of 

adders like Simple Adder, Carry Look Ahead Adder, Carry 

Skip Adder, and Carry Select Adder on the Virtex2 FPGAs 

and found that the Simple Adder provides better 

performance. In [3], the authors discussed various parallel 

prefix networks design and implementation on a Xilinx 

Virtex5 FPGA. It is observed that the Simple Adder 

provides better performance over the prefix networks for 

the bit widths up to 256 bits. This is due to the advantage 

of the carry chain structure on the FPGA. All these works 

by different authors shows that the simple adder provides 

better performance on FPGA.  

         The area, delay results for these works depend upon 

synthesis reports. In [2], the authors described several 

Carry Tree Adders implemented on a Xilinx Spartan3 

EFPGA. It is found that the Kogge Stone Carry Tree Adder 

provide better delay performance for the higher order bits. 

The results obtained for this paper is similar to those 

presented in [2]. Carry Tree Adders are designed, coded, 

simulated and synthesized and then it is compared with the 

Simple Adder. The obtained area, power, delay results of 

various Carry Tree Adders are compared with each other 

and also with the Simple Adder. Among all the Carry Tree 

Adders, Kogge-Stone Adder and Han-Carlson Adder is 

expected to be the fastest adder in ASIC implementation 

but not in FPGA implementation.  

      In this paper, Kogge-Stone Adder is taken, since it is 

having minimum fan-out and logic depth than Han-Carlson 

Adder, and modified using Fast Carry Logic technique in 

order to make it suitable for FPGA implementation [6, 7, 8 

&9]. The addition operation performed by Simple Adder, 

which is generated by synthesis tool, is shown in Fig.5 (a). 

From Fig.5 (a), it is clear that the Prefix-computation stage 

of the Simple Adder uses multiplexers. Similarly, the 

Prefix-computation stage of Carry Tree Adder is replaced 

with the Fast Carry logic technique which uses muxes as 

shown in Fig.5 (b). The Fast Carry Logic architecture for 

4-bit addition is shown in Fig.5(c). Instead of using Black 

cells, Grey cells and White buffers to propagate and 

generate the carry signals, simple muxes are used. The 

blocks present in Fast Carry Logic technique also uses 

muxes. The input to the Fast Carry Logic is the propagated 

and generated carry signal of the Pre-computation stage. 

The Pre-computation and Post-computation of the 

modified adder is similar to that of the normal carry tree 

adders. 

V. RESULTS 

         The delay, power and cell area results obtained by  

synthesizing the designed adders for 128bits using 

Cadence RTL compiler (90nm technology) is shown in 

Table 1, 2 & 3. The abbreviations used in the table are: KS 

for the Kogge Stone Adder, BK for the Brent Kung Adder, 

LF for the Lander Fischer Adder and HC for Han Carlson 

Adder. 

 

Fig.5 (a) Simple Adder 

 

Fig.5 (b) Carry Tree Adder 

 

Fig.5(c) Fast Carry Logic for 4-bit Carry tree addition  

      The delay is measured in terms of nanoseconds, power 

in terms of nanowatt. From the results it is found that the 

Carry Tree Adders provide best delay performance than the 

Simple adder. Among the Carry Tree Adders, Kogge-Stone 

Adder and Han-Carlson Adder provide best delay as it is 

expected but the area and power utilized by those adders 

are more. Comparatively, Brent-Kung Adder and Lander-

Fischer Adder utilizes less area and power. 
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Table 1: Delay Results of Carry Tree Adders compared 

with Simple Adder 

 

Table2: Power Results of Carry Tree Adders compared 

with Simple Adder 

 

Table3: Cell Area Results of Carry Tree Adders 

compared with Simple Adder 

 

         Fig.4 shows the simulated delay results of the adders 

for the bit widths up to 128bits using Xilinx ISE13.2 

software tool. From the Fig.4,it is found that the Simple 

Adder provide best delay performance over the Carry Tree 

Adder. The obtained delay result is entirely different from 

the result shown in Table 1. This is because of the presence 

of Fast Carry chain structure on Xilinx FPGA. Among the 

Carry Tree adders, Kogge-Stone Adder provides best delay 

as it is expected. 

    Fig.5 (a-d) shows the delay results of Kogge-Stone 

Adder, Kogge-Stone Modified Adder and Simple Adder for 

the FPGA families like Spartan-3E, Virtex-4, Virtex-5 and 

Virtex-6 Lower power. Some of the 64-bit adder structure 

cannot be fitted in to all the devices under this family. 

 

Fig.6. Simulated Delay Results of Carry Tree Adders 

compared with Simple Adder  

 

Fig.7.a) 

 

Fig.7.b) 



E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR 

International Journal of Scientific Engineering and Technology Research 

Volume. 02,IssueNo.06, July-2013, Pages:467-479 

 

Fig.7.c 

 

Fig.7.d 

Fig.7. (a-d) Simulated Delay results. 

        Depends on the adder structure, the device and 

package has been selected. From the Fig it is found that, 

for Spartan-3E FPGA, Kogge-Stone adder provide best 

performance after it reaches 256 bits whereas Modified 

adder provides best performance after it reaches 128bits, 

for Virtex-4 FPGA, Kogge-Stone adder provides best 

performance after it reaches 128bits whereas Modified 

adder provides best performance from 128bits, for Virtex-5 

FPGA, Kogge-Stone adder provides best performance after 

it reaches 256bits whereas Modified adder provides best 

performance from 128bits, for Virtex-6 FPGA, it is  able to 

reduce the delay of Carry Tree Adder but Simple Adder 

provide better delay performance. 

VI. METHOD OF STUDY 

       The adders to be studied were designed with varied bit 

widths up to 128 bits and coded in vhdl. The functionality 

of the designs is verified via simulation with the Model 

Sim. The Xilinx ISE 12.2 software was used to synthesize 

the designs onto the Spartan3E FPGA. Then in order to 

effectively test for the critical late process, two steps were 

taken. At First block (labeled as ROM in the figure below) 

was instantiated on the FPGA using the Core Generator to 

allow arbitrary patterns of inputs to be applied to the adder 

design. A multiplexer design at each adder o/p selects 

where or not to include the adder in the measured results 

can be shown in Fig.3. Switch on the FPGA board was 

wired to the select pin of the multiplexers. This allows the 

measurements to made the subtract out the delay due to the 

memory, the multiplexers, and interconnect. 

                      

 

Fig.8. Circuit used to test the adders. 

     Second, the parallel prefix network was analyzed to 

determine if a specific pattern could be used to extract the 

worst case delay. Considering the structure of the 

Generate-Propagate (GP) blocks (i.e., the BC and GC 

cells), we were able to develop the scheme by considering 

the subset of input values to the GP blocks is as fallows.  

Table 4: Subset of (g, p) Relations Used for Testing 

 

     If we arbitrarily assign the (g, p) ordered pairs the 

values (1, 0) = True and (0, 1) = False, then the table is 

self-contained and forms an OR truth table. If the both 

inputs to the GP block is False, then the output is False 

conversely. if both inputs are True and output is also True. 

Hence the input patterns that alternates between the (g, p) 

pairs of (1, 0) and (0, 1) will force its GP pair block to the 

alternate states. Like as it is easy to see that the GP blocks 

being fed by its predecessors will also alternate states. This 

scheme will ensure that the worsted case delay will be 

generated in the parallel prefix network since every block 

will be active. In order to ensure this scheme works, the 
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parallel prefix adders were synthesized with the “Keep 

Hierarchy” design setting turned on (otherwise, the FPGA 

compiler attempts to reorganize the logic assigned to each 

LUT). With this option turned on, it ensures that each GP 

block is mapped to one LUT, preserving the basic parallel 

prefix structure, and ensuring that this test strategy is 

effective for determining the critical delay. The designs 

were also synthesized for speed rather than area 

optimization.  

     The adders were tested with a Tektronix TLA7012 Logic 

Analyzer. The logic analyzer is equipped with the 7BB4 

module that provides a timing resolution of 20 ps under the 

Magni Vu setting. This allows direct measurement of the 

adder delays. The Spartan 3E development board is 

equipped with a soft touch-landing pad which allows low 

capacitance connection directly to the logic analyzer. The 

test setup is depicted in the figure below. 

 

Fig.9. Test setup showing the Logic Analyzer and 

Spartan 3E development board. 

 

Fig.10. Screen shot of a delay measurement for a 64 bit adder using MagniVu timing (blue traces) on the TLA 7012.  

V. DISCUSSION OF RESULTS 

          The simulated adder delays obtained from the Xilinx 

ISE synthesis reports are shown in Fig. 11. The simulation 

results for the carry skip adders are not included because the 

ISE software is not able to correctly identify the critical path 

through the adder and hence does not report accurate 

estimates of the adder delay. Observe that a semi-log plot is 

employed, so as expected the tree-adder delay plots as a 

straight line on this graph. Somewhat surprising is the fact 

that the sparse Kogge-Stone adder has about the same delay 

as the regular Kogge-Stone adder. Because the sparse 

Kogge Stone completes the summation process with a 4 bit 

RCA, which are optimized via the fast carry chain, its 

performance is expected to be intermediate between the 

regular Kogge-Stone adder and the RCA. The impact of the 

routing overhead would seem to be a likely cause. 

 

Fig. 11. Simulation results for the adder designs. 
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       However, according to the synthesis reports, the delay 

with the logic only makes the regular Kogge-Stone slightly 

faster. This will need to be a topic of further investigation. 

Overall, when the delay due to routing overhead is deleted, 

then the tree adders are closer to the simple RCA design. 

Then the RCA adders exhibits the delay with widths up to 

64 bits when the routing delay is excluded and out to 128 

bits with the routing delay included.  

        Figures 12 and 13 depict the measured results using 

TLA. The comparison between the tree adders ,RCA is 

given in Figure12. Then the basic trends for  the same: the 

tree adders exhibit logarithmic delay dependence on bit 

widths and the RCA has linear performance. An RCA as 

large as 160 bits wide was synthesizable on the FPGA, 

while a Kogge-Stone adder up to 128 bits wide was 

implemented. The carry-skip adders are compared with the 

Kogge-Stone adders and the RCA in Figure 13. Carry skip 

adders with a skip of four and eight were implemented. The 

poor performance of the carry skip adders is attributable to 

the significant routing overhead incurred by this structure. 

 

Fig.12. Measured results for the parallel-prefix adder 

designs compared with the RCA. 

 

Fig.13. Measured results for the carry-skip adders 

compared to the RCA and Kogge-Stone adders. 

      The actual measured data appears to be a bit smaller 

than what is predicted by the Xilinx ISE synthesis reports. 

An analysis of these reports, which give a breakdown of 

delay due to logic and routing, would seem to indicate that 

at adder widths approaching 256 bits and beyond, the 

Kogge-Stone adder will have superior performance 

compared to the RCA. Based on the synthesis reports, the 

delay of the Kogge-Stone adder can be predicted by the 

following equation:  

                                   (7) 

  where N= 2n, the adder bit width, ΔLUT is the delay 

through a lookup table (LUT), and ρKS(n) is the routing 

delay of the Kogge-Stone adder as a function of n. The 

delay of the RCA can be predicted as: 

                           (8) 

where ΔMUX is the mux delay associated with the fast-carry 

chain and τRCA is a fixed logical delay process. There is no 

routing delay assumed for the RCA due to the use of the 

fast carry chain ,For the Spartan3E FPGA, the synthesis of  

reports give the following values: ΔLUT= 0.612, ΔMUX= 

0.051, and τRCA= 1.715. Even though the  ΔMUX<< ΔLUT, it 

is already expected that the Kogge Stone adder will 

eventually be faster than the RCA because N= 2N provided 

that ρKS(n) grows , it can be relatively slower than (N – 2) 

ΔMUX. Indeed, Table II predicts that the Kogge Stone adder 

will have superior performance at N = 256.  

Table II                                                                                   

Delay Results for the Kogge-Stone Adders 

 

       The second and third columns represent the total 

predicted delay and the delay due to routing only for the 

Kogge Stone adder from the synthesis reports of the Xilinx 

ISE. The fitted routing in columns represents the predicted 

routing delay using a quadratic polynomial in n based on 

the n= 4 to 128. This allows the n= 256 routing late to be 

predicted with some degree of confidence as an actual 

Kogge-Stone adder at this bit width was not synthesize. 

Then the final two columns give the predicted adder delays 

for the Kogge-Stone and RCA using equations (7) and (8), 

respectively. The good match between the measured and 

simulated data for the implemented Kogge-Stone adders 
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and RCAs gives confidence that the predicted superiority 

of the Kogge-Stone adder at the 256 bit width is accurate.  

      This differs from the results ,where the parallel-prefix 

adders, including the Kogge-Stone adder, always exhibited 

inferior performance compared with the RCA (simulation 

results out to 256 bits were reported). The work ,did use a 

different FPGA (Xilinx Virtex 5), which may account for 

some of the differences. 

VII. CONCLUSION 

        This paper presents a new approach for the basic 

operators of parallel prefix tree adders. In Skalansky, KS, 

LF, Knowles adders the delay is reduced by this new 

approach, in BK adder there is no much difference with this 

new approach and in the case of HC adder the delay is 

increased. The same can be understood with reference to 

number of logic levels of implementation, as the logic levels 

are more delay increases. The area requirement can be 

considered from the utilization of LUTs, Slices and over all 

gate count. The BK adder occupies less area compared to 

other adders, but does not show much difference with new 

approach. Skalansky, LF adders occupies slightly more area 

in new approach compared to old method. KS and Knowles 

adders occupy more area in new approach. HC adder shows 

almost no difference with new approach. 
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