

www.semargroups.org

ISSN 2319-8885

Vol.02,Issue.06,

July-2013,

Pages:467-479

Copyright @ 2013 SEMAR GROUPS TECHNICAL SOCIETY. All rights reserved.

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder

Using FPGA
E.SREENIVASA GOUD

1
, P.C.PRAVEEN KUMAR

2

1
Research Scholar, ECE Dept, Kottam College of Engineering, Chinnatekur, Kurnool, AP-INDIA,

E-mail:esgoudies@gmail.com.
2
Assoc Prof, ECE Dept, Kottam College of Engineering, Chinnatekur, Kurnool, AP-INDIA,

E-mail:chenna05@gmail.com.

Abstract: The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and

microprocessor data path units. Such, as the extensive research continues to be focused on improving the power-delay and then

performance of the adder. In the VLSI implementations and the parallel-prefix adders (also known as carry-tree adders) are

known to have the best performance. However, this performance advantage does not translate directly into FPGA

implementations due to constraints on logic block configurations and then routing overhead. In this paper we can investigates

three types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, and then spanning tree adder) and compares them to the

simple Ripple Carry Adder (RCA). These designs of varied bit-widths were implemented on a Xilinx Virtex5 FPGA and delay

values were taken from static timing analysis of synthesis results obtained from Xilinx ISE design suite 10.1. Due to the

presence of the fast carry-chain, when the RCA designs are we can exhibit better delay performance up to 64 bits. The carry-

tree adders have a speed advantage over the RCA as bit widths approach 256.

Keywords: Ripple Carry Adder (RCA) and Carry Skip Adder (CSA), FPGA implementations, power-delay performance, carry

tree Adders, VLSI designs, digital signal processors (DSP).

I. INTRODUCTION

 The binary adder is the critical element in most digital

circuit designs including digital signal processors (DSP) and

microprocessor units. And such as, extensive research

continues to be focused on improving the power-delay

performance of the adders. VLSI implementations, parallel-

prefix adders are known to have the best performance.

Reconfigurable logic such as Field Programmable Gate

Arrays (FPGAs) has been gaining in popularity in recent

years because it offers improved performance in terms of

speed and power over DSP-based and microprocessor-based

solutions for many practical designs involving mobile DSP

and telecommunications applications and a significant

reduction in development time and cost over Application

Specific Integrated Circuit (ASIC) designs.

 The power advantage is especially important with the

growing popularity of mobile and portable electronics,

which make extensive use of DSP functions. However,

because of the structure of the configurable logic and

routing resources in FPGAs, parallel-prefix adders will have

a different performance than VLSI implementations. In

particular, most modern FPGAs employ a fast-carry chain

Which optimizes the carry path for the simple Ripple Carry

Adder (RCA). In this paper, the practical issues involved

in designing and implementing tree-based adders on FPGAs

are this work was supported in part by NSFLSAMP and

UT-System STARS awards. The FPGA ISE synthesis

software was supplied by the Xilinx University program

described.

 An efficient testing strategy for evaluating the

performance of the adders is discussed. Then the several

tree-based adder structures are implemented and

characterized on a FPGA and compared with the Ripple

Carry Adder (RCA) and the Carry Skip Adder (CSA).

Finally, some conclusions and suggestions for improving

FPGA designs to enable better tree-based adder

performance are given. Parallel-prefix structures are found

to be common in high performance adders because of the

delay is logarithmically proportional to the adder width.

Such structures can usually be divided into three stages

1. Pre-computation

mailto:venuturupallivijayendra@gmail.com

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

2. Prefix tree

3. Post-computation

II. PARALLEL-PREFIX ADDITION

 When the binary adder is the critical element in most

digital circuit designs including digital signal processors

(DSP) and then microprocessor data path units. Such, as

the extensive research continues to be focused on

improving the power delay performance of the adder. In

the VLSI implementations, and then parallel-prefix adders

are known to have the best performance. Reconfigurable

logic such as Field Programmable Gate Arrays (FPGAs)

has been gaining in popularity in recent years because it

offers improved performance in terms of speed and power

over DSP-based and microprocessor-based solutions for

many practical designs involving mobile DSP and

telecommunications applications and a significant

reduction in development time and cost over Application

Specific Integrated Circuit (ASIC) designs. The power

advantage is especially important with the growing

popularity of mobile and portable electronics, which make

extensive use of DSP functions.

 However, because of the structure of the configurable

logic and routing resources in FPGAs, parallel-prefix

adders will have a different performance than VLSI

implementations. In particular, most modern FPGAs

employ a fast-carry chain which optimizes the carry path

for the simple Ripple Carry Adder (RCA). In this paper,

the practical issues involved in designing and

implementing tree-based adders on the FPGAs. An

efficient testing strategy for evaluating the performance of

these adders is discussed. Several tree-based adder

structures are implemented and characterized on a FPGA

and compared with the Ripple Carry Adder (RCA) and the

Carry Skip Adder (CSA).

Fig.1. Block Diagram of Prefix addition.

 Finally, some conclusions and suggestions for

improving FPGA designs to enable better tree-based adder

performance are given. The problems are involved in

FPGA implementation are investigated and the possible

FPGA architecture which can make the Carry Tree Adder

to provide high performance over the Simple adder it can

be explored. Then the possible trade-offs like area, power,

delay, interconnect count and fan-out involved in the

adders are examined.

 There are three stages the addition it consists of the

following computations:

• Pre-computation:

 Gm:n=An and Bn, G0=cin; Pm:n=An xor Bn, P0=0; (1)

• Prefix-computation:

(Gm, Pm) ο (Gn, Pn) = (Gn:k + Pn:k·

Gk-1:n, Pn:k·Pk-1:j) (or) Gm:n=Gn:k+Pn:k· Gk-1:n Pm:n=Pn:k·Pk-1 (2)

• Post-computation:

 Sn=Pn xor Gn-1:0 (3)

III. SPARSE KOGGE-STONE ADDER GENERATOR

 This generates Verilog code for adders with large

numbers of bits. While a complete adder would produce

the output of all bits, this just outputs a series of carry bits

at fixed intervals. These can be used as the carry-in bits for

a series of smaller adders. This is useful in particular for

FPGAs, where small ripple-carry adders can be much

faster than general-purpose logic thanks to fast connections

between neighbouring slices. This allows a large adder to

be composed of many smaller adders by generating the

intermediate carries quickly.

A. Options

Bits in adder:
128

Bits between carry outputs:
16

Background: When we add numbers on paper, we would

do this in our normal base 10 counting system by adding

together the digits in the smallest place first, then moving

up until we've reached the largest digit. If any pair of digits

added together reaches 10, the 10 gets taken out and added

to the next highest place, where it's equivalent to a 1 digit

at that magnitude.

When we add in base 10, we add pairs of digits and carry up

to the next place.

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

 In binary, we do exactly the same thing. In binary

though, we only have 0s and 1s in each place. We add

together the digits and any carry from the previous position,

and if put together they reach 2, the 2 is taken out and

carried to the next place up, where it's equivalent to a 1 digit

at that magnitude. We get a very simple table which shows

what the value and carry are for any combination:

First

Digit

Second

Digit

Carry

from

previous

Total

Carry

to next

place

Result

in this

place

0 0 0 0 0 0

0 1 0 1 0 1

1 0 0 1 0 1

1 1 0 2 1 0

0 0 1 1 0 1

0 1 1 2 1 0

1 0 1 2 1 0

1 1 1 3 1 1

 This table is easily implemented with a few digital

gates, and by stringing together a whole series of these from

the smallest to the largest place, we get a "ripple carry"

adder, which adds exactly like we would on paper. Gates,

however, take a certain amount of time to produce a stable

output. While on a much smaller time scale than we're used

to dealing with, gate delay is what constrains the speed a

processor or IC can run at. The ripple carry adder is so

named because the carry from the smallest bit affects the

output and carry of the bit one place up, and as each place is

worked out the correct result appears as a "ripple" from

smallest to largest bit.

 When measuring the time it takes to do a calculation

using gates, we have to add together the gate delays and find

the longest route through the gates to a result we depend on.

Since in the adder the output of each bit depends on the

carry from the next bit down, we have a long chain where

every bit, including the largest, is affected by the input to

the smallest bit. The longest path here is from the input to

the smallest place to the output of the largest place of the

result. This is proportional to the number of bits - doubling

the number of bits will double the time it takes to add the

numbers together. Ripple-carry adders for large numbers

can take a long time to stabilize as a result.

 To get around this problem and calculate faster, we can

use the idea that the carry behavior of any stretch can be

described by "propagate" and "generate" flags. A stretch in

the addition, which could be just a single place or a range

from one to another, can be described by these behaviors.

Generate blocks always produce a carry bit. Propagate

blocks produce a carry if and only if they get a carry in.

Blocks can do neither - will always produce a 0 carry.

 First, we add together all the digits individually

without any carry to work out the generate and propagate

behaviors for each individual place in the sum. If those

places would generate a carry, we mark them with a

"generate". If they don't carry over, but adding on another 1

would make them create a carry, we mark them with

"propagate". A bit marked as propagate will create a carry

bit out only if it gets a carry bit in.

 0 + 0 = 0, no carry. 0 + 1 doesn't carry either - doesn't

generate or propagate.

 0 + 1 = 1, no carry. 1 + 1 would create a carry - doesn't

generate but does propagate.

 1 + 0 = 1, same as last line

 1 + 1 = 0, carry 1. 0 + 1 doesn't carry - generates but

doesn't propagate.

Each place in the sum becomes a stretch 1 place long.

 Two adjacent stretches can be combined together in to a

larger range, which will propagate if both blocks within it

propagate. It will generate if either the higher place block

generates, or the lower place block generates and the larger

place block propagates the carry.

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

 We can combine two stretches next to each other to

form a larger range. We combine together pairs of places

using those rules to find behavior of larger stretches.

Combined ranges - each 2 places long.

 By combining stretches together, we get the behaviour

of large blocks. In the first layer, we could combine

together pairs of places, in the second layer we combine

together the pairs to form ranges of 4, and could continue

moving up to 8, 16 and so on. The gate delay through this

is the depth of the tree, which now only increases by a

level every time the number of bits in the sum doubles.

With ripple carry, the amount of time would double if the

number of bits doubled.

We can combine blocks to get the behavior of the whole

range.

 So what use is this? We only have these "propagate"

and "generate" values for the ranges here. The key is that if

we have a range from the smallest bit up to any point, the

carry out of the top bit is 1 if and only if the range

generates. In our example above, we have four ranges

which extend all the way to the least significant bit on the

right, giving us the carries out of the 1st, 2nd, 4th and 8th

bit from the right.

For a range from the least significant bit up to any other

bit, the generate flag tells you whether there is a carry.

 That completes the theory behind how tree adders

fundamentally work. In practice, we often want to have

carries out of places other than powers of 2 so build the

tree so that the ranges overlap at each level. There are

many different designs of how to arrange the tree to create

carries at different points. In particular, if we get the carry

out of every place then we can recombine them with the

original "propagate" values for the next place up to get the

numbers added. The way these different designs tend to be

drawn is as a tree, where we mark each range at the point

where it ends. Each range is built from the previous range

to end at that position, and another adjacent range.

 Standard tree notation, with two of the ranges

highlighted. The red and blue trees have the links you

would follow to find where they start and end highlighted

in their color. The red gets all the way to 0- gives us the

carry out of its column.

 Notice that we can still only combine ranges which are

next to each other - the red range combines the blue range

and another which begins the place after the blue one ends.

For details of specific designs I'd recommend Hardware

algorithms for arithmetic modules. This uses the tree

notation described above.

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

 This page generates adders based on the Kogge-Stone

tree design, but rather than generating carries from every bit

(as the original does), this trims it down to provide only a

few at regular intervals. This attempts to allow you to strike

a balance between fast but complicated trees, which can

have lots of connections crossing over each other and be

difficult to lay out in hardware, and slower but simpler

ripple-carry adders, which can actually be faster in FPGA

designs.

III. CARRY TREE ADDERS

 The various types of carry tree adders are shown in

Fig.2. Each carry tree adder consists of three parts. They

are: Upper part, Middle part, Lower part. Using these parts

the carry tree adders computes N outputs from N inputs as

shown in Fig.1. The Upper part generates and propagates

the carry signal from the input to the prefix stage using the

formula given in equation (4). The propagated and

generated carry signals are combined using the associate

operator “ο”. This operation is performed in the middle part

using the formula given in equation (5). The Middle part

consists of prefix cells such as black cells, grey cells and

white buffers [1]. The arrangement of these prefix cells in

different order results in various types of Carry Tree adders.

Where the carry signals need not to be propagated. Such

operations are performed by grey cells. The grey cells

generate the carry signal only. Black cell generates and

propagates the carry signal. There are some places the white

buffers are used to reduce the loading effect for the further

stages.

 The Lower part generates the overall sum using the

formula given in equation (6). Depends on the arrangement

of prefix cells, the carry tree adders involves in tradeoffs

like area, power, delay, interconnect count, fan-out and

logic depth [3 & 4]. Fig.2 (a) shows the Brent-Kung the

dark black line in the figure indicates the critical path of the

adder. The critical path for Han-Carlson and Kogge-Stone

are less. So these two adders are expected to be the fastest

adder. The power utilized by all the Carry Tree Adder is

more than the Simple Adder.

(a)Brent Kung

(b) Kogge Stone

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

minimum area and maximum logic depth. Due to the

maximum logic depth, the delay of this adder is expected to

be high. Fig.2 (b) shows the Kogge-Stone adder. Adder. It is

designed in such a way that it provides it provides

maximum interconnect count and area but minimum logic

depth and fan-out. Ladner-Fischer adder as shown in Fig.2

(c) provides minimum logic depth with improved area. Han-

Carlson adder as shown in Fig. 2(d) provides minimum

logic depth and minimum interconnect count.

(c) Lander Fischer

(d)Han Carlson

Fig.2. (a-f) Carry Tree adders

 Simple adder is designed using Verilog HDL „+‟

operator. The carry chain structure on FPGA makes Simple

Adder to provide high performance. But this is not an

efficient adder for VLSI implementation. In this paper,

Carry Tree Adder is compared with Simple Adder for both

ASIC and FPGA implementation. Parallel-prefix adders,

also known as carry tree adders and pre compute the status

and generate signals. These signals are variously combined

using the fundamental carry operator (fco).

 (4)

 Due to associative property of the fundamental carry

operator, these operators can be combined and different

ways to perform various adder structures. For, example the

four-bit carry-look ahead generator is given by:

 (5)

 A simple rearrangement of the order of operations

allows equal operation; perform in a more efficient tree

structure for this four bit example:

 (6)

 It is readily apparent that a key advantage of the tree-

structured adder is that the critical path due to the carry

delay is on the order of log2N for an N-bit wide adder.

Then the arrangement of the prefix work connection gives

rise to various families of adders. Then the discussion of

the various carry tree structures,

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

Fig.3. (a) 16 bit Kogge-Stone adder and (b) sparse 16-bit Kogge-Stone adder.

 For this study, the focus is on the Kogge-Stone adder,

known for having minimal logic depth and fan out (see Fig

3(a)). Here we designate BC as the black cell which

generates the ordered pair in equation (5); the gray cell

(GC) generates the left signal only, following .The

interconnect area is known to be high, but for an FPGA

with large routing overhead to begin with, this is not as

important as in a VLSI implementation. The regularity of

the Kogge-Stone prefix network has built in redundancy

which has implications for fault-tolerant designs .The

sparse Kogge-Stone adder, shown in Fig 1(b), is also

studied. This hybrid design completes the summation

process with a 4 bit RCA allowing the carry prefix network

to be simplified.

 Another carry-tree adder known as the spanning tree

carry-look ahead (CLA) adder is also examined .Like the

sparse Kogge-Stone adder, this design change with 4-bit

RCA. it is interested to compare with the performance of

this adder with the sparse and regular Kogge-Stone adders.

These also of interest for the spanning tree CLA is its

testability features.

Fig. 4. Spanning Tree Carry Look ahead Adder (16 bit)

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

IV.RESEARCH AND PROPOSED WORK

 The different types of carry tree adders are discussed

in [4]. In [5], the authors implemented different types of

adders like Simple Adder, Carry Look Ahead Adder, Carry

Skip Adder, and Carry Select Adder on the Virtex2 FPGAs

and found that the Simple Adder provides better

performance. In [3], the authors discussed various parallel

prefix networks design and implementation on a Xilinx

Virtex5 FPGA. It is observed that the Simple Adder

provides better performance over the prefix networks for

the bit widths up to 256 bits. This is due to the advantage

of the carry chain structure on the FPGA. All these works

by different authors shows that the simple adder provides

better performance on FPGA.

 The area, delay results for these works depend upon

synthesis reports. In [2], the authors described several

Carry Tree Adders implemented on a Xilinx Spartan3

EFPGA. It is found that the Kogge Stone Carry Tree Adder

provide better delay performance for the higher order bits.

The results obtained for this paper is similar to those

presented in [2]. Carry Tree Adders are designed, coded,

simulated and synthesized and then it is compared with the

Simple Adder. The obtained area, power, delay results of

various Carry Tree Adders are compared with each other

and also with the Simple Adder. Among all the Carry Tree

Adders, Kogge-Stone Adder and Han-Carlson Adder is

expected to be the fastest adder in ASIC implementation

but not in FPGA implementation.

 In this paper, Kogge-Stone Adder is taken, since it is

having minimum fan-out and logic depth than Han-Carlson

Adder, and modified using Fast Carry Logic technique in

order to make it suitable for FPGA implementation [6, 7, 8

&9]. The addition operation performed by Simple Adder,

which is generated by synthesis tool, is shown in Fig.5 (a).

From Fig.5 (a), it is clear that the Prefix-computation stage

of the Simple Adder uses multiplexers. Similarly, the

Prefix-computation stage of Carry Tree Adder is replaced

with the Fast Carry logic technique which uses muxes as

shown in Fig.5 (b). The Fast Carry Logic architecture for

4-bit addition is shown in Fig.5(c). Instead of using Black

cells, Grey cells and White buffers to propagate and

generate the carry signals, simple muxes are used. The

blocks present in Fast Carry Logic technique also uses

muxes. The input to the Fast Carry Logic is the propagated

and generated carry signal of the Pre-computation stage.

The Pre-computation and Post-computation of the

modified adder is similar to that of the normal carry tree

adders.

V. RESULTS

 The delay, power and cell area results obtained by

synthesizing the designed adders for 128bits using

Cadence RTL compiler (90nm technology) is shown in

Table 1, 2 & 3. The abbreviations used in the table are: KS

for the Kogge Stone Adder, BK for the Brent Kung Adder,

LF for the Lander Fischer Adder and HC for Han Carlson

Adder.

Fig.5 (a) Simple Adder

Fig.5 (b) Carry Tree Adder

Fig.5(c) Fast Carry Logic for 4-bit Carry tree addition

 The delay is measured in terms of nanoseconds, power

in terms of nanowatt. From the results it is found that the

Carry Tree Adders provide best delay performance than the

Simple adder. Among the Carry Tree Adders, Kogge-Stone

Adder and Han-Carlson Adder provide best delay as it is

expected but the area and power utilized by those adders

are more. Comparatively, Brent-Kung Adder and Lander-

Fischer Adder utilizes less area and power.

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

Table 1: Delay Results of Carry Tree Adders compared

with Simple Adder

Table2: Power Results of Carry Tree Adders compared

with Simple Adder

Table3: Cell Area Results of Carry Tree Adders

compared with Simple Adder

 Fig.4 shows the simulated delay results of the adders

for the bit widths up to 128bits using Xilinx ISE13.2

software tool. From the Fig.4,it is found that the Simple

Adder provide best delay performance over the Carry Tree

Adder. The obtained delay result is entirely different from

the result shown in Table 1. This is because of the presence

of Fast Carry chain structure on Xilinx FPGA. Among the

Carry Tree adders, Kogge-Stone Adder provides best delay

as it is expected.

 Fig.5 (a-d) shows the delay results of Kogge-Stone

Adder, Kogge-Stone Modified Adder and Simple Adder for

the FPGA families like Spartan-3E, Virtex-4, Virtex-5 and

Virtex-6 Lower power. Some of the 64-bit adder structure

cannot be fitted in to all the devices under this family.

Fig.6. Simulated Delay Results of Carry Tree Adders

compared with Simple Adder

Fig.7.a)

Fig.7.b)

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

Fig.7.c

Fig.7.d

Fig.7. (a-d) Simulated Delay results.

 Depends on the adder structure, the device and

package has been selected. From the Fig it is found that,

for Spartan-3E FPGA, Kogge-Stone adder provide best

performance after it reaches 256 bits whereas Modified

adder provides best performance after it reaches 128bits,

for Virtex-4 FPGA, Kogge-Stone adder provides best

performance after it reaches 128bits whereas Modified

adder provides best performance from 128bits, for Virtex-5

FPGA, Kogge-Stone adder provides best performance after

it reaches 256bits whereas Modified adder provides best

performance from 128bits, for Virtex-6 FPGA, it is able to

reduce the delay of Carry Tree Adder but Simple Adder

provide better delay performance.

VI. METHOD OF STUDY

 The adders to be studied were designed with varied bit

widths up to 128 bits and coded in vhdl. The functionality

of the designs is verified via simulation with the Model

Sim. The Xilinx ISE 12.2 software was used to synthesize

the designs onto the Spartan3E FPGA. Then in order to

effectively test for the critical late process, two steps were

taken. At First block (labeled as ROM in the figure below)

was instantiated on the FPGA using the Core Generator to

allow arbitrary patterns of inputs to be applied to the adder

design. A multiplexer design at each adder o/p selects

where or not to include the adder in the measured results

can be shown in Fig.3. Switch on the FPGA board was

wired to the select pin of the multiplexers. This allows the

measurements to made the subtract out the delay due to the

memory, the multiplexers, and interconnect.

Fig.8. Circuit used to test the adders.

 Second, the parallel prefix network was analyzed to

determine if a specific pattern could be used to extract the

worst case delay. Considering the structure of the

Generate-Propagate (GP) blocks (i.e., the BC and GC

cells), we were able to develop the scheme by considering

the subset of input values to the GP blocks is as fallows.

Table 4: Subset of (g, p) Relations Used for Testing

 If we arbitrarily assign the (g, p) ordered pairs the

values (1, 0) = True and (0, 1) = False, then the table is

self-contained and forms an OR truth table. If the both

inputs to the GP block is False, then the output is False

conversely. if both inputs are True and output is also True.

Hence the input patterns that alternates between the (g, p)

pairs of (1, 0) and (0, 1) will force its GP pair block to the

alternate states. Like as it is easy to see that the GP blocks

being fed by its predecessors will also alternate states. This

scheme will ensure that the worsted case delay will be

generated in the parallel prefix network since every block

will be active. In order to ensure this scheme works, the

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

parallel prefix adders were synthesized with the “Keep

Hierarchy” design setting turned on (otherwise, the FPGA

compiler attempts to reorganize the logic assigned to each

LUT). With this option turned on, it ensures that each GP

block is mapped to one LUT, preserving the basic parallel

prefix structure, and ensuring that this test strategy is

effective for determining the critical delay. The designs

were also synthesized for speed rather than area

optimization.

 The adders were tested with a Tektronix TLA7012 Logic

Analyzer. The logic analyzer is equipped with the 7BB4

module that provides a timing resolution of 20 ps under the

Magni Vu setting. This allows direct measurement of the

adder delays. The Spartan 3E development board is

equipped with a soft touch-landing pad which allows low

capacitance connection directly to the logic analyzer. The

test setup is depicted in the figure below.

Fig.9. Test setup showing the Logic Analyzer and

Spartan 3E development board.

Fig.10. Screen shot of a delay measurement for a 64 bit adder using MagniVu timing (blue traces) on the TLA 7012.

V. DISCUSSION OF RESULTS

 The simulated adder delays obtained from the Xilinx

ISE synthesis reports are shown in Fig. 11. The simulation

results for the carry skip adders are not included because the

ISE software is not able to correctly identify the critical path

through the adder and hence does not report accurate

estimates of the adder delay. Observe that a semi-log plot is

employed, so as expected the tree-adder delay plots as a

straight line on this graph. Somewhat surprising is the fact

that the sparse Kogge-Stone adder has about the same delay

as the regular Kogge-Stone adder. Because the sparse

Kogge Stone completes the summation process with a 4 bit

RCA, which are optimized via the fast carry chain, its

performance is expected to be intermediate between the

regular Kogge-Stone adder and the RCA. The impact of the

routing overhead would seem to be a likely cause.

Fig. 11. Simulation results for the adder designs.

E.SREENIVASA GOUD, P.C.PRAVEEN KUMAR

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

 However, according to the synthesis reports, the delay

with the logic only makes the regular Kogge-Stone slightly

faster. This will need to be a topic of further investigation.

Overall, when the delay due to routing overhead is deleted,

then the tree adders are closer to the simple RCA design.

Then the RCA adders exhibits the delay with widths up to

64 bits when the routing delay is excluded and out to 128

bits with the routing delay included.

 Figures 12 and 13 depict the measured results using

TLA. The comparison between the tree adders ,RCA is

given in Figure12. Then the basic trends for the same: the

tree adders exhibit logarithmic delay dependence on bit

widths and the RCA has linear performance. An RCA as

large as 160 bits wide was synthesizable on the FPGA,

while a Kogge-Stone adder up to 128 bits wide was

implemented. The carry-skip adders are compared with the

Kogge-Stone adders and the RCA in Figure 13. Carry skip

adders with a skip of four and eight were implemented. The

poor performance of the carry skip adders is attributable to

the significant routing overhead incurred by this structure.

Fig.12. Measured results for the parallel-prefix adder

designs compared with the RCA.

Fig.13. Measured results for the carry-skip adders

compared to the RCA and Kogge-Stone adders.

 The actual measured data appears to be a bit smaller

than what is predicted by the Xilinx ISE synthesis reports.

An analysis of these reports, which give a breakdown of

delay due to logic and routing, would seem to indicate that

at adder widths approaching 256 bits and beyond, the

Kogge-Stone adder will have superior performance

compared to the RCA. Based on the synthesis reports, the

delay of the Kogge-Stone adder can be predicted by the

following equation:

 (7)

 where N= 2n, the adder bit width, ΔLUT is the delay

through a lookup table (LUT), and ρKS(n) is the routing

delay of the Kogge-Stone adder as a function of n. The

delay of the RCA can be predicted as:

 (8)

where ΔMUX is the mux delay associated with the fast-carry

chain and τRCA is a fixed logical delay process. There is no

routing delay assumed for the RCA due to the use of the

fast carry chain ,For the Spartan3E FPGA, the synthesis of

reports give the following values: ΔLUT= 0.612, ΔMUX=

0.051, and τRCA= 1.715. Even though the ΔMUX<< ΔLUT, it

is already expected that the Kogge Stone adder will

eventually be faster than the RCA because N= 2N provided

that ρKS(n) grows , it can be relatively slower than (N – 2)

ΔMUX. Indeed, Table II predicts that the Kogge Stone adder

will have superior performance at N = 256.

Table II

Delay Results for the Kogge-Stone Adders

 The second and third columns represent the total

predicted delay and the delay due to routing only for the

Kogge Stone adder from the synthesis reports of the Xilinx

ISE. The fitted routing in columns represents the predicted

routing delay using a quadratic polynomial in n based on

the n= 4 to 128. This allows the n= 256 routing late to be

predicted with some degree of confidence as an actual

Kogge-Stone adder at this bit width was not synthesize.

Then the final two columns give the predicted adder delays

for the Kogge-Stone and RCA using equations (7) and (8),

respectively. The good match between the measured and

simulated data for the implemented Kogge-Stone adders

Design and Characterization of Sparse Kogge Stone Parallel Prefix Adder Using FPGA

International Journal of Scientific Engineering and Technology Research

Volume. 02,IssueNo.06, July-2013, Pages:467-479

and RCAs gives confidence that the predicted superiority

of the Kogge-Stone adder at the 256 bit width is accurate.

 This differs from the results ,where the parallel-prefix

adders, including the Kogge-Stone adder, always exhibited

inferior performance compared with the RCA (simulation

results out to 256 bits were reported). The work ,did use a

different FPGA (Xilinx Virtex 5), which may account for

some of the differences.

VII. CONCLUSION

 This paper presents a new approach for the basic

operators of parallel prefix tree adders. In Skalansky, KS,

LF, Knowles adders the delay is reduced by this new

approach, in BK adder there is no much difference with this

new approach and in the case of HC adder the delay is

increased. The same can be understood with reference to

number of logic levels of implementation, as the logic levels

are more delay increases. The area requirement can be

considered from the utilization of LUTs, Slices and over all

gate count. The BK adder occupies less area compared to

other adders, but does not show much difference with new

approach. Skalansky, LF adders occupies slightly more area

in new approach compared to old method. KS and Knowles

adders occupy more area in new approach. HC adder shows

almost no difference with new approach.

VIII.REFERENCES

[1] N. H. E. Weste and D. Harris, CMOS VLSI Design, 4
th

edition, Pearson–Addison-Wesley, 2011.

[2] R. P. Brent and H. T. Kung, “A regular layout for

parallel adders,” IEEE Trans. Comput., vol. C-31, pp. 260-

264, 1982.

[3] D. Harris, “A Taxonomy of Parallel Prefix Networks,”

in Proc. 37th Asilomar Conf. Signals Systems and

Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for

the Efficient Solution of a General Class of Recurrence

Equations,” IEEE Trans. on Computers, Vol. C-22, No 8,

August 1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-

Grained Redundancy in Adders,” Int. Symp. on Quality

Electronic Design, pp. 317-321, March 2007.

[6] T. Lynch and E. E. Swartzlander, “A Spanning Tree

Carry Lookahead Adder,” IEEE Trans. on Computers, vol.

41, no. 8, pp. 931-939, Aug. 1992.

[7] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian,

“Easily Testable Cellular Carry Lookahead Adders,” Journal

of Electronic Testing: Theory and Applications 19, 285-298,

2003.

[8] S. Xing and W. W. H. Yu, “FPGA Adders: Performance

Evaluation and Optimal Design,” IEEE Design & Test of

Computers, vol. 15, no. 1, pp. 24-29, Jan. 1998.

[9] M. Bečvář and P. Štukjunger, “Fixed-Point Arithmetic

in FPGA,” Acta Polytechnica, vol. 45, no. 2, pp. 67- 72,

2005.

[10] K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with FPGA

technology,” IEEE Northeast Workshop on Circuits and

Systems, pp. 498-501, Aug. 2007.

E. Sreenivasa Goud was born at

Chinnatekur, Kurnool, A.P, India,

on 1
st
 October 1985.

He completed Diploma in

Electronics & Communication

Engineering in 2005 from Govt.

Polytechnic College, Anantapur,

A.P, India. He received B.Tech.

degree in Electronics and

Communication Engineering from SKTRM College of

Engineering, Kondair, Mahaboob Nagar, A.P, India, in

2010. He is pursuing his M.Tech. in VLSI, from Kottam

College of Engineering. Kurnool, A.P, India. His area of

interest includes VLSI design and Digital Communication.

P.C.Praveen Kumar was born at

Kurnool, A.P. He received

Bachelor degree in Electronics and

Communication Engineering from

SKTRM College of Engineering,

in 2007. He received his Master

degree in Digital Electronics &

Communication Systems in 2010

from JNTUH. Hyderabad, A.P.

India. He is presently pursuing his Ph.D. work on Inverted L

Antennas from Gitam University, Vishakhapatnam, A.P,

India. Presently he is working as Head of the department of

electronics and communication engineering in Kottam

Group of Institutions, Kurnool, A.P, India. He is having 5

years of teaching experience. His area of interest includes

VLSI design, low power testing, Electromagnetic Fields and

Transmission Lines, Antenna Theory and Wave Propagation

& Microwave Technology.

