

www.ijsetr.com

ISSN 2319-8885

Vol.07,Issue.02,

February-2018,

Pages:0067-0071

 Copyright @ 2018 IJSETR. All rights reserved.

Implementation of Viterbi and Huffman Coding for Area Efficient

and High Speed Architecture
KOLLI PRASANNA

1
, P. SUDHAKAR

2

1
PG Student, Dept of ECE, Vignan Institute of Engineering for Women, Visakhapatnam, AP, India.

2
Assistant Professor, Dept of ECE, Vignan Institute of Engineering for Women, Visakhapatnam, AP, India.

Abstract: An area efficient and high speed architecture design of Viterbi decoder with encoding rate of 1/2 and constraint length

of k = 3 is presented in this paper for the application in satellite communication. Trellis Code modulation system is implemented.

The architecture design of high speed Viterbi decoder is implemented and results are obtained using Xilinx tool. Further work is

extended using huffman coding. Both the results are been compared. The design architecture using huffman coding takes less

area as well as offers high speed which is proved in our project.

Keywords: Viterbi Decoder, Trellis Code Modulation, BMU, Huffman Coding.

I. INTRODUCTION

 In media transmission, a convolutional code is a sort of

blunder rectifying code that produces equality images by

means of the sliding use of a boolean polynomial capacity to

an information stream. The sliding application speaks to the

'convolution' of the encoder over the information, which

offers ascend to the term 'convolutional coding.' The sliding

idea of the convolutional codes offices trellis interpreting

utilizing a period invariant trellis. Time invariant trellis

interpreting permits convolutional codes to be most extreme

probability delicate choice decoded with sensible

multifaceted nature. The capacity to perform temperate

greatest probability delicate choice interpreting is one of the

significant advantages of convolutional codes. This is as

opposed to exemplary square codes which are for the most

part spoken to by a period variation trellis and in this manner

are commonly hard choice decoded. Convolutional codes are

regularly portrayed by the base code rate and the profundity

(or memory) of the encoder [n,k,K]. The base code rate is

normally given as n/k, where n is the information rate and k

is the yield image rate. The profundity is regularly called the

"limitation length" 'K', where the yield is a component of the

past K-1 inputs. The profundity may likewise be given as the

quantity of memory components 'v' in the polynomial or the

most extreme conceivable number of conditions of the

encoder (commonly 2^v). Convolutional codes are regularly

depicted as constant. In any case, it might likewise be said

that convolutional codes have discretionary piece length, as

opposed to that they are persistent, since most certifiable

convolutional encoding is performed on squares of

information.

 Convolutionally encoded piece codes commonly utilize

end. The discretionary square length of convolutional codes

can likewise be differentiated to great piece codes, which for

the most part have settled piece lengths that are dictated by

logarithmic properties. The Viterbi deciphering calculation,

proposed in 1967 by Viterbi, is an unraveling procedure for

convolutional codes in memory-less clamor. The calculation

can be connected to a large group of issues experienced in

the plan of correspondence frameworks. The Viterbi

unraveling calculation gives both a greatest probability and a

most extreme a posteriori calculation. A most extreme a

posteriori calculation recognizes a code word that expands

the contingent likelihood of the decoded code word against

the got code word, conversely a greatest probability

calculation distinguishes a code word that amplifies the

restrictive likelihood of the got code word against the

decoded code word. The two calculations give similar

outcomes when the source data has a uniform conveyance.

Generally, execution and silicon territory are the two most

vital worries in VLSI outline. As of late, control dispersal

has likewise turned into a critical concern, particularly in

battery-fueled applications, for example, phones, pagers and

smart phones.

II. LITERATURE REVIEW

 General solutions for low-power VD design have been

well studied by existing work. Power reduction in VDs could

be achieved by reducing the number of states (for example,

reduced-state sequence decoding (RSSD) [2], T-algorithm

[3] and T -algorithm [4], [5]) or by over-scaling the supply

voltage [6]. Over-scaling of the supply voltage usually needs

to take into consideration the whole system that includes the

VD (whether the system allows such an over-scaling or not),

which is not the main focus of our research. RSSD is in

general not as efficient as the M-algorithm [2] and T -

algorithm is more commonly used than M-algorithm in

practical applications, because the T-algorithm requires a

sorting process in a feedback loop while M -algorithm only

KOLLI PRASANNA, P. SUDHAKAR

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.02, February-2018, Pages: 0067-0071

searches for the optimal path metric (PM), that is, the

minimum value or the maximum value of all PMs.

Algorithm has been shown to be very efficient in reducing

the power consumption [7], [8]. However, searching for the

optimal PM in the feedback loop still reduces the decoding

speed. To overcome this drawback, two variations of the T -

algorithm have been proposed: the relaxed adaptive VD [7],

which suggests using an estimated optimal PM, instead of

finding the real one each cycle and the limited-search

parallel state VD based on scarce state transition (SST) [8].

In our preliminary work [9], we have shown that when

applied to high-rate convolutional codes, the relaxed

adaptive VD suffers a severe degradation of bit-error-rate

(BER) performance due to the inherent drifting error

between the estimated optimal PM and the accurate one.

On the other hand, the SST based scheme requires

predecoding and re-encoding processes and is not suitable

for TCM decoders. In TCM, the encoded data are always

associated with a complex multi-level modulation scheme

like 8-ary phase-shift keying (8PSK) or 16/64- ary

quadrature amplitude modulation (16/64QAM) through a

constellation point mapper. At the receiver, a soft-input VD

should be employed to guarantee a good coding gain.

III. VITERBI DECODER

 A Viterbi decoder utilizes the VA for interpreting a

bitstream that has been encoded utilizing FEC in light of a

convolutional code. The Viterbi Decoder is utilized as a part

of numerous FEC applications what's more, in frameworks

where information are transmitted and subject to mistakes

before gathering. The VA is regularly utilized as a part of a

wide range of correspondences and information stockpiling

applications. It is utilized for deciphering convolutional

codes, in base band identification for remote frameworks,

and furthermore for recognition of recorded information in

attractive plate drives. The necessities for the Viterbi

decoder or on the other hand Viterbi indicator, which is a

processor that actualizes the VA, rely upon the applications

where they are utilized. The piece chart of Viterbi decoder is

appeared in Fig. 1. The piece chart comprises of the

accompanying modules: Branch Measurements, Add-

Compare-Select (ACS), enlist trade, greatest way metric

determination, and yield enroll choice [10], [11].

Fig.1. Viterbi decoder block diagram.

IV. IMPLEMENTATION OF VITERBI DECODER

 In this section, BMU, ACSU, SPMU and TBU parts of

the proposed Viterbi decoder is discussed.

A. Branch Metric Unit

 BMU calculates the branch metric. For hard decision ML

decoding, the branch metric for a branch is the hamming

distance between the received code and the expected code at

that instant. BMU comprises of XOR gate and adder. The

BMU block is shown in the Fig.2.

Fig. 2. Branch metric computational unit.

B. Add Compare Select Unit

 This structure contains a pair of source and destination

states, and four interconnecting branches as shown in Fig 3.

In this Fig. 3 the upper or lower branch from each state A(

B) is taken, when the corresponding origin input bit is ‘1’ or

‘0’. If the source input bit is ‘1’ or ‘0’, the next state for both

A or B is C or D. On the basis of the butterfly notation the

architectural block of ACSU can be decomposed as shown in

Fig. 3. On the basis of the butterfly notation the architectural

block of ACSU [2] can be decomposed as shown in Fig.4.

The implementation of two wings of the butterfly module is

same except the expected signal. The architecture has shown

only one wing of the butterfly module. Branch metric is

added with the path metric for state S0 (S2), which is equal

to hamming distance between the received signal and the

expected signal. The expected input is exclusive-or with

received signal. ‘No. of 1’s Count’ Blocks counts the

number of 1’s in its input. Adder blocks add the branch

metric and state metrics to create a new state metric.

Comparator is used to compare the upper path metric and

lower path metric for determining the survivor path.

Multiplexer select line, connected with the output of the

comparator block, selects the survivor path.

Fig.3. A butterfly structure for ACSU updates

corresponding to a node.

C. Survivor Path Memory Unit

 This block is needed only for trace back method. Two

incoming branches are there for every state except head and

tail part of trellis diagram. Between these two branches, it

determines which branch will survive (lower or upper). For

flagging the survivor path only one bit is enough. ACSU

gives one decision bit for every survivor path. All the

Implementation of Viterbi and Huffman Coding for Area Efficient and High Speed Architecture

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.02, February-2018, Pages: 0067-0071

decision bits are stored in a memory. The size of the memory

depends on both the number of ACSU used in proposed

architecture and the trellis length. The number of ACSU

used in decoder, determines the word length. As in the

proposed architecture four ACSU are used, the word length

is 4. Trellis length determines the depth of the memory. Here

the constraint length of the proposed Viterbi decoder is k =

3. Thus, the trellis length is 16 and the depth of the memory

is 32, i.e., twice of the trellis length. Hence, the memory of

dimension 32×4 bit is required for the proposed design. In

Fig. 5, SPMU is a 32×4 bit duel port memory where all the

decision bits are stored. The four ACSU outputs from 4

nodes are fed as input to the SPMU (simple dual port RAM,

minimum size has to be 32×4) at each clock cycle. 4-bit

Output from the RAM is fed to decode block TBU. This

block is shown in Fig. 5.

Fig. 4. Architecture of an ACSU.

Fig. 5 Architecture of proposed Viterbi decoder.

D. Trace Back Unit

 A trellis diagram can be viewed as an extension of the

state diagram which explicitly elaborates the passage of

time, i.e., it is a combination of time and space

representation of state diagram. Fig. 6 shows the trellis

corresponding to encoder . In the trellis diagram, different

nodes represent the states of the encoder. From an initial

state (S0) the trellis maintains the possible transitions to the

next states encoded symbols are there for each node, which

corresponds to input bit ‘0’ and ‘1’. The maximum number

of possible states in the trellis depends on the number of

memory used in the encoder. For the present trellis, there are

four possible states 00(S0), 10(S1), 01(S2) and 11(S3), and

being a radix-2 trellis, each state has two possible output

paths attached to input bit ‘0’ and ‘1’. It should be noted

that, there is a unique path for every code word. Here the

blue color line denotes the survivor path and the red color

line denotes the trace back direction as shown in Fig. 6.

Fig. 6. Trellis diagram of the FSM state diagram shown.

E. Last In First Out

 Last In First Out (LIFO) is a 32×1 bit duel port RAM.

The LIFO Unit is connected with the output of TBU. The

block diagram of LIFO unit is shown in the Fig. 7. In LIFO,

the first 16 bits are written in forward direction, addressed by

up counter, and then it starts to decode the final output,

addressed by down counter. Here ‘Data’ line denotes the

decision bits which were decoded by the trace back method.

Address line is connected with address unit. Address unit is a

5 bit up and down counter. When the read signal is high it

starts to read the signal and when write signal is high, it

writes all the bits coming in the ‘Data’ line. Both ‘Write’ and

‘Read’ signals will work if ‘CS’ (chip select) line is high.

Here address line is connected to up/down counter which

provides the address where the bit is stored.

Fig.7. Block Diagram of LIFO Unit.

V. HUFFMAN CODING

 Huffman coding is a widely used technique for data

compression. It can save from 20% to 90% of the amount of

storage or the communication channel bandwidth needed,

depending on the characteristics of the input being

compressed [13]. No information loss occurs after decoding.

Huffman’s greedy algorithm uses a table of frequencies of

occurrence of each input symbol to build up an optimal way

of representing each symbol by a binary string. Using this,

the encoder assigns a variable length binary string to each

KOLLI PRASANNA, P. SUDHAKAR

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.02, February-2018, Pages: 0067-0071

fixed length input symbol such that the input symbols with

higher frequency have shorter lengths. For example, consider

coding six symbols [a, b, c, d, e, f]. Assume their frequencies

are [45,13,12,16,9,5]. Their Huffman codes are [O,

101,100,111,1101,1100]. Figs. 8(a) and (b) show the trees

corresponding to fixed length coding and (variable length)

Huffman coding, respectively. In Fig. 8, each rectangle

represents a leaf with a symbol and its frequency of

occurrence, and each circle represents an internal node with

frequency of occurrence of all the symbols in its subtree. The

binary label on each edge is used for coding the symbol.

Encoding is simple. We just concatenate the codes

representing the symbols. For example, three input symbols

“abc” are coded as 0 101 . 100 = 0101100 using the tree in

Fig. 8(b). Decoding a string obtained by Huffman coding is

easy, since no Huffman code is a prefix of any other code.

Initial codes can be simply identified and translated back to

original symbols by traversing the Huffman tree. For

example, string 001011101 can be decoded into “aabe” using

the tree in Fig. 8(b). The decoding process needs a

convenient representation of the codes so that the initial

codes can be easily picked off. A binary tree whose leaves

are the given symbols provides such a representation. The

binary code for an input symbol can be interpreted as the

path from the root to that symbol, where “0” and “1” mean

“go to the left child” and “go to the right child,” respectively.

(a)

(b)

Fig. 8. (a) A tree with fixed length codes. (b) An optimal

Huffman code tree can always be represented by a full

binaly tree, in which every nonleaf node (internal node)

has exactly two children as shown in Fig. 8(b) (the tree in

Fig. 8(a) is not a full binary tree). Note that a full binary

tree corresponding to an optimal code tree for n symbols

has n leaves and n - 1 internal nodes. The length of the

encoded input can be represented as B(T) = C, ,f(c)d,(c)

where f(c) denotes the frequency of input symbol c in the

set of symbols C and d,(c) is the length of the code

corresponding to c.

 Huffman coding uses a specific method for choosing the

representation for each symbol, resulting in a prefix code

(sometimes called "prefix-free codes", that is, the bit string

representing some particular symbol is never a prefix of the

bit string representing any other symbol). Huffman coding is

such a widespread method for creating prefix codes that the

term "Huffman code" is widely used as a synonym for

"prefix code" even when such a code is not produced by

Huffman's algorithm.

Example 1: This is an important and widely-used example

of a statistical compression algorithm. As with all such

algorithms the basic idea is to identify those data items

(symbols) that appear most frequently and give them the

shortest codes. This is achieved by first creating a binary tree

as follows...

 Rank the symbols by their frequency (which should

sum to 1) and create a node for each symbol.

 Create a new node by joining the two lowest ranked

nodes and summing their rankings together.

 Continue until all nodes on the tree are joined to

create a single node of rank 1.

Binary Tree Example:

 Having obtained the binary tree it is now possible to

calculate the Huffman code for each symbol...

 Starting at the root assign 0 to the branch with the

higher value and 1 to the branch with the lower

value.

 Once the tree is traversed the code for each symbol

may be obtained by following the path from the

root to that symbol.

 This ensures that that the highest frequency symbols have

the shortest codes and that a continuous stream of encoded

bits may be uniquely decoded. To illustrate how codes are

assigned:

Implementation of Viterbi and Huffman Coding for Area Efficient and High Speed Architecture

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.02, February-2018, Pages: 0067-0071

Decoding: Decoding a Huffman code is very easy. For

example decode

0110010001110100010011

when

A = 1

B = 000

C = 010

D = 011

E = 0010

F = 0011

Efficiency

It is possible to calculate the average number of bits per

character by multiplying the length of each character code by

its frequency and then taking the sum.

VI. RESULTS

 Results of this paper is as shown in bellow Figs.9 to 12.

Fig.9. Schematic diagram of VD

Fig.10. RTL Schematic of VD.

Fig.11. Output waveform of VD.

 Fig.12. RTL diagram of Huffman.

Synthesis Report:

TABLE I: Comparison of Area, Time And Frequency

VII. CONCLUSION

 A high speed and area efficient Viterbi decoder

architecture, mainly for the application in wireless

communication, is proposed in this paper. The simulation

result is checked in Virtex family using Xilinx 14.7. This

calculation is reasonable for TCM frameworks which

dependably utilize high rate convolution code. Huffman

coding is been implemented and the obtained results shows

that the area using huffman coding there is vast reduced in

area and time delay compared to viterbi decoder . From the

discussion, it can be concluded that our structure takes less

area and also offers high speed comparative to the other

architectures and is suitable for satellite related application,

as payload and speed are very important factors in wireless

communication. Further work can be developed by

implementation of hard decision adaptive Viterbi decoder for

constraint length k=7 at rate 1/2 is can be performed .Same

work can be extended for soft decision based adaptive

Viterbi decoder which suits multiple quantization level by

modifying Branch metric computation unit accordingly.

VIII. REFERENCES

[1] Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and

Chen-Yi Lee, 2005. Design of a Power-Reduction Viterbi

Decoder for WLAN Applications, IEEE Transactions on

Circuits and System-I: regular papers, 52(6), 321-328G.

KOLLI PRASANNA, P. SUDHAKAR

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.02, February-2018, Pages: 0067-0071

[2] Irfan Habib, Ozgun Paker, and Sergei Sawitzki,2009,

Design Space Exploration of Hard- Decision Viterbi

Decoding:

[3] ann S. Yuanand Weidong Kuang, 2004, Teaching

Asynchronous Design in Digital Integrated Circuits, IEEE

transactions on education,47(3),397-404.

[4] Injin He, Zhongfeng Wang, Zhiqiang Cui, and Li Li,

2009, Towards an Optimal Trade-off of Viterbi Decoder

Design, IEEE conferecne,3030- 3033.

[5] Joshi M.V., Gosavi S., Jegadeesan V., Basu A., Jaiswal

S.,Al-Assadi W.K.and Smith S.C.2007,NCL Implementation

of Dual-Rail 2s Complement 8×8 Booth2 Multiplier using

Static and Semi-Static Primitives, IEEE region 5 Technical

Conference, April 20-21, Fayetteville,59- 64.

[6] Jun Jin Kong, Keshhab K Parhi., 2004 Low- Latency

Architectures for High-Throughput Rate Viterbi Decoder,

IEEE Transactions on VLSI System, 12(6), 642-651.

[7]Meilana Siswanto1, Masuri Othman, Edmond Zahedi,

2006 VLSI Implementation of 1/2 Viterbi Decoder for IEEE

P802.15-3a UWB Communication, IEEE ICSE2006 Proc.,

Kuala Lumpur, Malaysia,666 – 670.

[8] Qing Li, Xuan-zhong Li, Han-hong Jiang and Wen-hao

He 2008, A High-Speed Viterbi Decoder, Fourth

International Conference on Natural Computation IEEE.,

p.p. 313-316.

[9] Yao Gang, Ahmet T., Erdogan, and TughrulArslan,

2006, An Efficient Pre- Traceback Architecture for the

Viterbi Decoder Targeting Wireless Communication

Applications, IEEE Transactions on Circuits and Systems-I:

regular papers, 53(9),423-432

[10] W. Chen, "RTL Implementation of Viterbi Decoder,"

Linköping University, Department of Electrical Engineering,

June 2006.

[11] S. Hema, V. S. Babu and P. Ramesh, "FPGA

Implementation of Viterbi Decoder," Proceedings of the 6th

WSEAS Int. Conf. on Electronics, Hardware, Wireless and

Optical Communications, Corfu Island, Greece, February

16-19, 2007.

[12] T. H. Corman, C. E. hiserson, and R. L. Rivest,

Introduction to Algorithms. McGraw Hill, 1990.

Author’s Profile:

Kolli Prasanna pursuing her M.Tech in the

department of Electronics & Communication

Engineering , Vignan Institute of Engineering

for Women, Vizag, AP, India. He obtained

her B.Tech(ECE) from Khader Memorial

College of Engineering & Technology,

Vishakhapatanam.

P. Sudhakar, M.Tech, working as Assistant Professor in

the department of Electronics and Communication

Engineering , Vignan Institute of Engineering for Women,

Vizag, AP, India. His area of interest is signal processing.

