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Abstract: This paper presents the design and implementation of a complete near-field communication (NFC) tag system that 

supports high-security features. The tag design contains all hardware modules required for a practical realization, which are: 

analog 13.56-MHz radio-frequency identification (RFID) front-end, a digital part that includes a tiny (programmable) 8-b 

microcontroller, a framing logic for data transmission, a memory unit, and a crypto unit. All components have been highly 

optimized to meet the fierce requirements of passively powered RFID devices while providing a high level of flexibility and 

security. The tag is fully compliant with the NFC Forum Type-4 specification and supports the ISO/IEC 14443A (layer 1–4) 

communication protocol as well as block transmission according to ISO/IEC 7816. Its security features include support of 

encryption and decryption using the Advanced Encryption Standard (AES-128), the generation of digital signatures using the 

elliptic curve digital signature algorithm according to NIST P-192, and several countermeasures against common 

implementation attacks, such as side-channel attacks and fault analyses. The chip has been fabricated in a 0.35-μm CMOS 

process technology, and requires 49 999 GEs of chip area in total (including digital parts and analog front-end). Finally, we 

present a practical realization of our design that can be powered passively by a conventional NFC enabled mobile phone for 

realizing proof-of-origin applications to prevent counterfeiting of goods, or to provide location-aware services using RFID 

technology. 

 

Keywords: 8-B Microcontroller, Advanced Encryption Standard (AES), Elliptic Curve Cryptography, Elliptic Curve Digital 

Signature Algorithm (ECDSA), Embedded System, Implementation Security, Near-Field Communication (NFC), Radio-

Frequency Identification (RFID), VLSI Design. 

I. INTRODUCTION 

    Radio-Frequency Identification (RFID) is a wireless 

communication technique that has become increasingly 

important in the last decade. Applications such as electronic 

passports, logistics, animal identification, and car 

immobilizers already make use of this technology. A 

widely-used data-transmission standard based on RFID 

technology is near-field communication (NFC). With the 

integration of NFC functionality into the latest generation of 

mobile phones (Samsung Galaxy Nexus, HTC Ruby) a 

further spread of RFID technology is expected, paving the 

way for new applications. These new applications will have 

increased demand concerning the functionality provided by 

the RFID system, especially in the context of security and 

privacy. In a typical RFID system, a reader (e.g., a mobile 

phone) and a tag communicate remotely by means of an RF 

field. Most of the tags (more than 2 billion were sold in 

2011) are so-called passive tags that also receive their power 

supply from the RF field. A passive tag is basically a 

microchip attached to an antenna. The simple design of 

passive tags allows them to be produced at low cost, which 

is important for applications where large numbers of tags 

are required. Tags used in future RFID applications will 

have to provide additional functionality, such as security 

and data-storage features. Moreover, the design of the tags 

must become more flexible to allow an easier adaption for 

new applications. Achieving these goals for passive tags by 

keeping the overhead in terms of power consumption 

(passive operation) and silicon area (directly influences the 

tag price) as low as possible is highly challenging. 

    A lot of effort has been made by the research community 

to allow cryptographic services on resource-constrained 

RFID tags. The most prominent services are strong 

authentication, using, for example, symmetric primitives 

like the advanced encryption standard (AES) [2], [3] or 

asymmetric primitives like elliptic curve cryptography 

(ECC) [4], [5]. The integration of asymmetric schemes is an 

especially big challenge for passive RFID tag designs as 

they need more resources (computational effort, memory, 

etc.) than symmetric schemes. When tags have to handle 

additional functionality, their control complexity also 

increases today’s RFID tags use state machines fixed in 

hardware for handling their control tasks. However, this 

approach is no longer practical and even inefficient when 

the control complexity increases. Using a microcontroller 

approach instead is favorable and provides much more 

flexibility. Moreover, having a microcontroller on the tag 
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for handling the control tasks also allows reusing it for 

computing cryptographic operations. 

      In this paper, we present the design and implementation 

of a security-enabled NFC tag with flexible architecture. 

The so-called CRYPTA tag (Cryptographic Protected Tags 

for new RFID Applications) operates at a carrier frequency 

of 13.56 MHz and works fully passively. We target a low-

area design that requires as little resources as possible such 

that the tag production does not exceed the practical limits 

of a possible commercial launch. The security-enabled NFC 

tag has a size of less than 50 kGEs and supports strong 

authentication features that are based on the AES-128 

(symmetric cryptography) as well as on digital signing of 

data using the elliptic curve digital signature algorithm 

(ECDSA) over the prime field GF(p192) (asymmetric 

cryptography). The low-area goals have been achieved by 

heavily reusing existing hardware components, such as a 

common 8-b microcontroller or a common memory. Passive 

operation of the tag with conventional NFC-enabled mobile 

phones allows realizing security related NFC/RFID 

applications. Besides this, we also present a fully working 

prototype sample of our design fabricated on a 0.35-μm 

CMOS process technology. Our work contains multiple 

contributions that relate to the field of secure tag design, 

which are: 

1. First low-resource RFID tag that supports asymmetric 

cryptography; 

2. First combined low-area implementation of ECDSA 

and AES; 

3. Flexible tag design based on a microcontroller for 

protocol handling and steering of the cryptographic 

module (including a design flow for program 

development); 4) first low-resource RFID tag with 

countermeasures against implementation attacks; 

4. First prototype chip of a proof-of-origin tag;  

5. Consideration of the whole tag life cycle including: 

production, personalization, and user application. 

     Among the contributions listed above, describing the 

design of a complete system, including all hardware 

components required for the practical chip fabrication of a 

security-enabled tag (including EEPROM and analog front-

end which are often omitted in related work) is indeed the 

most valuable one.  Moreover, we provide details of the 

design at a level that is hardly available in the published 

literature. The remainder of this paper is organized as 

follows. Section II provides Security Protocol Design. RFID 

Tag Architecture in Section III, Implementation results and 

a description of a prototyping sample are presented in 

Section IV. Conclusions are drawn in Section V. 

II. SECURITY PROTOCOL DESIGN 

    In a security-enhanced RFID system, the level of security 

does not only rely upon the strength of the used 

cryptographic algorithms. The used protocols play a 

decisive role whether an attacker can successfully break into 

a system or not. Even if we use strong cryptographic 

algorithms, we need to ensure that the protocol is also 

secure. The protocol presented in this section allows the 

authentication of an RFID tag to a reader using the 

Advanced Encryption Standard (AES) as the cryptographic 

primitive. In RFID systems, the limited computing power 

and low-power constraints of the tags require special 

considerations concerning the used protocols. In addition to 

the available bandwidth for data transmission, attention 

should be paid to the compatibility to existing standards like 

the ISO/IEC 18000 or the Electronic Product Code (EPC). 

 
Fig.1. Interleaved challenge-response protocol in RFID 

systems. 

       The protocol is based on the unilateral authentication 

mechanism using random numbers presented. Integrating 

the presented challenge response authentication protocol 

into the ISO/IEC 18000 standard requires some additional 

considerations. In addition to the mandatory commands, 

which all tags must implement, custom commands can be 

specified. The two commands, integrated for authentication, 

are sending a challenge to the tag and requesting the 

encrypted value. These commands extend the existing 

standard although the basic functionality remains 

unchanged. Due to the low-power restrictions, the internal 

clock frequency of the RFID tag must be divided from 13.56 

MHz to 100 kHz. The applied standard demands that a 

response must follow 320μs after a request. Otherwise, the 

tag has to stay quiet. This available time of 32 clock cycles 

at a frequency of 100 kHz is not enough for encrypting a 

challenge using the AES algorithm. 

        The solution to this problem is to modify the protocol 

as shown in Fig.1. The challenges and the responses to the 

tags are interleaved to each other. Normally, there are a lot 

of RFID tags to be authenticated in the environment of a 

reader. After retrieving all unique IDs of the tags using the 

inventory request and the anti-collision sequence, the reader 

sends a challenge C1 to Tag1. This tag immediately starts 

the encryption of the challenge without sending any 

response. In the meanwhile, the reader sends further 

challenges to the tags Tag2 and Tag3. They also start 

encrypting their challenges after reception. After finishing 

the encryption of EK (C1), Tag1 waits for the request to 

send the encrypted value R1 back to the reader. When the 
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reader has sent the three challenges, it sends a request for 

receiving the response from Tag1. The received value R1 is 

verified by encrypting the challenge C1 and comparing the 

result with the received value. The two other unanswered 

challenges are received using the same method. Then the 

reader starts from the beginning authenticating all other tags 

in the environment. This protocol was evaluated using high 

level models of the RFID communication channel and is a 

proof of concept for future research on authentication 

protocols in RFID systems. This interleaving challenge-

response protocol has the advantage that each tag has at 

least 18 ms (1800 clock cycles at a clock frequency of 100 

kHz) time for encryption. A maximum of 50 tags can be 

authenticated per second. If there are only few tags in the 

range of a reader, the reader can decide to make breaks of at 

least 18 ms instead of sending interleaved requests. 

III. RFID TAG ARCHITECTURE 

 
Fig.2. Architecture of an RFID tag. 

        The architecture of a security-enhanced RFID tag is 

sketched in Fig.2. It consists of four parts: analog frontend, 

digital controller, EEPROM, and AES module. The analog 

frontend is responsible for the power supply of the tag 

which is transmitted from the reader to the tag. Other tasks 

of the analog frontend are the modulation and demodulation 

of data and the clock recovery from the carrier frequency. 

The digital control unit is a finite state machine that handles 

communication with the reader, implements the anti-

collision mechanism, and executes the commands in the 

protocol. Furthermore, it allows read and write access to the 

EEPROM and the AES module. The EEPROM stores tag-

specific data like the unique ID and the cryptographic key. 

These data must be retained when the power supply is lost. 

The security-enhanced RFID tag calculates strong 

cryptographic authentication with an AES module which is 

designed for low power requirements and low die-size 

restrictions. The requirements concerning power 

consumption and chip area and a description of the AES 

module are presented in the following sections. 

A. Requirements for RFID Tag Design 

     In order to achieve a significant economic benefit from 

using RFID systems, tags will need to be priced under US$ 

0.10 for simple identification tags and a little bit higher for 

security-enhanced tags. Additionally to the aspect of low 

cost, the environmental conditions play a decisive role 

because contactless identification must work within a 

distance of a few meters. The limiting factors thereby are 

the available power supply for the tag and the signal 

strength for modulation and demodulation. The available 

power consumption for the digital part of the RFID tag 

(digital controller and AES module) is amounting to 20 μA. 

Estimating the current consumption of the digital controller 

to 5 μA, 15 μA remain for the AES module which should 

not exceed a chip area of 5,000 gates. Additionally, the 

number of authenticated tags per second is about 50. As 

presented in chapter 3, this leads to an available time slot of 

18 ms for encrypting a 128-bit block of data. Our proposed 

AES architecture, which is presented in section 3.2, encrypts 

in about 1000 clock cycles. As a consequence, the clock 

frequency of the AES module can be reduced fewer than 

100 kHz. This allows reaching the ambitious power 

consumption goal. 

B. AES Architecture 

   The Advanced Encryption Standard (AES) is a symmetric 

encryption algorithm which was selected in 2001 by the 

National Institute of Standards and Technology (NIST) as 

the Federal Information Processing Standard FIPS-197. It 

operates on blocks of data, the so called State, that have a 

fixed size of 128 bits. The State is organized as a matrix of 

four rows and four columns of bytes. The defined key 

lengths are 128 bits, 192 bits, or 256 bits. Our 

implementation uses a fixed key size of 128 bits. As most 

symmetric ciphers, AES encrypts an input block by 

applying the same round function. The ten round function 

iterations alter the State by applying non-linear, linear, and 

key-dependent transformations. Each transforms the 128-bit 

State into a modified 128-bit State. Every byte of the State 

matrix is affected by these transformations: 

1. Sub Bytes substitutes each byte of the State. This 

operation is non-linear. It is often implemented as a 

table look-up. Sometimes the Sub Bytes transformation 

is called S-Box operation.  

2. Shift Rows rotates each row of the State by an offset. 

The actual value of the offset equals the row index, e.g. 

the first row is not rotated at all; the last row is rotated 

three bytes to the left. 

3. Mix Columns transforms columns of the State. It is a 

multiplication by a constant polynomial in an extension 

field of GF (28). 

4. Add Round Key combines the 128-bit State with a 128-

bit round key by adding corresponding bits mod 2. This 

transformation corresponds to a XOR-operation of the 

State and the round key. 

 

     The calculation of the 128-bit round keys works by 

applying the Key Schedule function. The first round key is 

equal to the cipher key. The computation of all other round 

keys is based on the S-Box functionality and the R-con 

operation. AES is a flexible algorithm for hardware 

implementations. A large number of architectures are 

possible to cover the full range of applications. AES 

hardware implementations can be tailored for low die-size 

demands in embedded systems or can be optimized for high 
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throughput in server applications. This flexibility of the 

AES algorithm was intended by its creators. They paid 

attention that the algorithm can be implemented on systems 

with different bus sizes. Efficient implementations are 

possible on 8-bit, 32-bit, 64-bit, and 128-bit platforms. 

Although many AES hardware architectures have been 

proposed, none of the reported architectures meets the 

requirements of an AES module for RFID tags regarding 

low die-size and low power-consumption requirements. 

Nearly all of these architectures have G-Bit throughput rates 

as optimization goal. This is contrarious to our needs where 

throughput is not of concern. Only a few published AES 

architectures do not optimize throughput at any cost. To 

name some: are FPGA implementations and ASIC 

implementations of AES which care about hardware 

efficiency. All these implementations do not unroll the AES 

rounds for sake of silicon size. The more S-Boxes are used, 

the less clock cycles are needed for encryption.  

     The encryption-only AES processor of a 128-bit 

architecture that utilizes 32 S-Boxes it is able to calculate 

one AES round in a single clock cycle. The compact 32-bit 

AES architecture is confident with four S-Boxes and takes 

eight cycles for one round. The FGPA implementations of N 

32-bit architectures they also use four S-Boxes. Four S-

Boxes suit a 32-bit architecture as each S-Box substitutes 8 

bits. The Mix Columns operation and the Shift Rows 

operation are 32-bit operations too because they transform 

either four columns bytes or four row bytes of the AES 

State. The Add Round Key operation (128-bit XOR) can 

also be split-up into 32-bit operations. Implementing the 

AES algorithm as a 32-bit architecture allows quartering the 

hardware resources compared to a 128-bit architecture. This 

comes at the expense of quadrupling the time for an AES 

encryption. The lower amount of hardware resources has a 

positive side effect on the power consumption: a quarter of 

hardware resources consume only a quarter of power. This 

is an important feature for wireless devices where the 

average power consumption is an even more important 

quality aspect than the overall energy needed to encrypt one 

block.  

    The overall energy consumption of a 32-bit architecture 

might be worse than for 128-bit architectures. But RFID 

tags offer neither the silicon space nor are the 

electromagnetic field strong enough to power a 128-bit data 

path. The power requirements for RFID tags are even too 

restrictive to allow the operation of a 32-bit AES 

implementation. Therefore, we decided to implement the 

AES algorithm as an 8-bit architecture instead of a 32-bit 

architecture. This novel approach for a hardware 

implementation of the AES algorithm is motivated by two 

reasons. First, an 8-bit architecture allows decreasing the 

number of S-Boxes from four to one to save silicon 

resources. Second, 8-bit operations consume significantly 

less power than 32-bit operations do. A penalty of an 8-bit 

architecture is the increased number of clock cycles for 

encryption. In RFID authentication applications and 

encryption lasting for 1000 cycles does not deteriorate the 

authentication throughput when several tags are 

authenticated concurrently. 

      The architecture of the proposed 8-bit AES module is 

depicted in Fig.3. It is presumably the smallest hardware 

implementation of the AES algorithm. 

 
Fig.3. Architecture of the AES module. 

      The module consists basically of three parts: a 

controller, RAM, and a data path. The controller 

communicates with other modules on the tag to exchange 

data and it sequences the ten rounds of an AES encryption. 

Therefore, it addresses the RAM accordingly and generates 

control signals for the data path. The RAM stores the 128-

bit State and a 128-bit round key. These 256 bits are 

organized as 32 bytes to suit the intended 8-bit architecture. 

32 bytes are the smallest possible memory configuration for 

AES. The memory is single ported to ease silicon 

implementation. Modified States and calculated round keys 

overwrite previous values. As no spare memory is present 

for storing intermediate values, the controller has to assure 

that no State byte nor is a key byte overwritten if it is 

needed again during encryption. The RAM implementation 

is register based. It makes use of clock gating to minimize 

power consumption. The data path of the AES module 

contains combinational logic to calculate the AES 

transformations Sub Bytes, Mix Columns, and Add Round 

Key (see Fig.3). The Shift Rows transformation is 

implemented by the controller. During the execution of Sub 

Bytes the controller addresses the RAM such that the Shift 

Rows operation is executed.  

      The biggest part of the AES data path is the S-Box 

which is used for the Sub Bytes operation. There are several 

options for implementing an AES S-Box. The most obvious 

option is a 256 × 8-bit ROM to implement the 8-bit table 

lookup. Unfortunately, ROMs do not have good properties 

regarding low-power design. A more appropriate option is 

to calculate the substitution values using combinational 

logic as presented. We adapted the proposed combinational 

S-Box by omitting the decryption circuitry to suit our 

encryption-only AES. One feature of this S-Box is that it 

can be pipelined by inserting register stages. The S-Box 
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makes use of one pipeline stage. This shortens the critical 

path of the S-Box to seven XOR gates and lowers glitching 

probability. Moreover, the pipeline register is used as 

intermediate storage for a pipelined Sub Bytes operation: 

during the substitution of one byte, the next byte is read 

from the memory. The substituted byte is written to the 

current read address. By choosing the read addresses 

properly this procedure combines efficiently the Sub Bytes 

and the Shift Rows operation. Shift Rows degrades to mere 

addressing. 

IV. IMPLEMENTATION RESULTS 

      We have implemented our flexible tag platform in 

VHDL and designed it toward low resource usage and low 

power consumption, i.e., by applying clock gating and 

operand isolation techniques. We implemented our design in 

a 0.35-μm CMOS technology using a semi-custom design 

flow with Cadence RTL Compiler as synthesis tool. Table I 

shows the chip-area results in terms of gate equivalents 

(GEs). In total, the chip needs 49 999 GEs, including analog 

front-end, FL, microcontroller, bus arbiter, CU, and 

memory. About 21% (10 763 GEs) is needed for the RFID 

analog front-end and the FL. The microcontroller needs 

around 19%, including instruction unit, ALU, PC, register 

file (about 65 GEs per register), and program ROM. The 

data path and the pattern sequencer of the CU take about 

15% of the chip area, i.e., 7488 GEs (this number does not 

include the ROM for ECDSA, AES, and SHA-1 program 

and the needed constants). The highest amount of resources 

is required for the memory, i.e., about 44% of the total area, 

which equals to 22 027 GEs. The smallest component by far 

is the bus arbiter (responsible for the AMBA bus), 

consuming less than 1% of the total area. 

TABLE I: AREA OF CHIP COMPONENTS 

 

    The RFID front-end is clocked with 106, 212, or 448 kHz 

according to the specified data rate. The CU can be clocked 

at higher frequencies (0.847, 1.7, 3.3, or 6.68 MHz) in order 

to improve the performance (configured in an EEPROM 

register during tag personalization). At a frequency of 1.7 

MHz, a digital signature can be generated within 505 ms, 

i.e., 863 109 clock cycles. Hashing a message needs 2.15 ms 

(3639 clock cycles) and AES needs 2.66 ms (no dummy 

rounds) and 9.16 ms (ten dummy rounds applied) which 

corresponds to 4529 and 15 577 clock cycles, respectively. 

At the highest frequency of 6.68 MHz, the ECDSA module 

needs 127 ms for generating a digital signature, which is 

sufficient for most applications having stringent response-

time requirements. 

TABLE II: DISTRIBUTION OF ROM CODE WITH 

RESPECT TO TAG FUNCTIONALITY 

 

A. Program ROM 

     After developing and evaluating the program of the 

microcontroller with the Java-based ISS described in the 

assembler was used to transform the assembly code into 

synthesizable VHDL ROM code. Proper operation of the 

whole tag has been further verified through simulations with 

Cadence NC Sim and through tests on an FPGA RFID tag 

prototype that can communicate with different reader 

devices. The final ROM code for the microcontroller 

contains 2027 instructions (equals 4054 B of code). 

Subroutine calls are used whenever possible to keep code 

size small. Table II shows the distribution of the ROM code 

with respect to tag functionality. Most instructions of the 

ROM code, about 25%, are only used for handling the 

block-transmission protocol. Around 15% of the 

instructions are utilized for generic subroutines that provide 

a basic set of functions that are reused multiple times (e.g., 

routines for accessing the AMBA bus). File management 

and security features require about 22%. The program part 

for steering the CU needs 766 instructions, corresponding to 

about 38% of the total program ROM (24% for ECDSA-

P192, 11% for AES encryption/decryption, and 2.8% for 

SHA-1). 

      Most of the instructions stored in the ROM relate to 

protocol handling, illustrating the high control complexity 

of our tag design. However, the code used for steering the 

CU also comprises mainly control instructions (e.g., for 

executing micro-code patterns). Analyzing the code in the 

ROM in detail shows that about 60% of the instructions are 

control operations (CALL, RET, BNZ, MICRO). Only 10% 

of the instructions relate to pure data-flow oriented 
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operations between one or two registers (XOR, ADD, 

ROT). The rest of the instructions belongs to operations 

between constants in ROM and registers, e.g., immediate 

load and compare instructions (MOVLF, XORLF). 

B. Power Consumption 

        Power simulations of the system were conducted with 

the transistor-level SPICE simulator Synopsys Nanosim. 

The simulation for the microcontroller shows a mean power 

consumption of only about 10 μA for the 0.35-μm CMOS 

process technology when powered with a supply voltage of 

2V and using a clock frequency of 106 kHz, i.e., for a 

default data rate of 106 kb/s. When higher data rates are 

selected, the power consumption increases accordingly 

(linearly with data rate). The CU, in contrast, consumes 

about 485 μA as total mean current measured at 847 kHz, 

i.e., the lowest frequency for the CU. More than 40% of that 

power is due to the memory unit, which is heavily used 

during scalar multiplication. The data path unit needs about 

24%, the clock tree requires approximately 16%. Note that 

the overall power consumption of the system is already 

quite low due to low-power design techniques, such as clock 

gating and operand isolation. It meets the power 

requirements of most HF RFID systems and can be applied 

in different RFID or NFC applications. However, the power 

consumption value can be even further decreased by moving 

toward a more-advanced CMOS process technology, e.g., 

0.18 or 0.13 μm. Using these technologies, the reading 

distance becomes even better and can be applied, e.g., in 

long range ISO/IEC 15 693 applications.  

C. RFID-Tag Prototyping Sample 

    We manufactured our RFID-tag implementation on a 

multi-project wafer using the 0.35-μm CMOS process 

technology C35b4 from AMS AG. For ease of testability, a 

small serial debug interface has also been added that allows 

detailed analysis of the analog front-end and the EEPROM 

(e.g., reading/writing arbitrary values from/to EEPROM). A 

photo of the manufactured chip is shown in Fig.4. After 

production, the chip has been integrated into a ceramic 

package and soldered on a small printed circuit board (PCB) 

to allow tests with real-world RFID-reader devices.  

 
Fig.4. Photo of the manufactured RFID tag-prototype 

chip. 

 
Fig.5. Proof-of-origin application using our RFID-tag 

prototyping sample and the Google Nexus S mobile 

phone. 

      The PCB contains an antenna with four windings that is 

connected to the analog front-end of the chip. An adjustable 

capacitor is used for matching of antenna and analog front-

end. Fig.5 shows a photo of the PCB with the packaged 

chip. We successfully tested the RFID-tag sample with 

different commercially available RFID readers, including 

mobile devices featuring NFC capabilities. Using the 

Google Nexus S, for example, the tag can be powered fully 

passively and can reliably communicate with the phone up 

to 3 centimeters (at data rates up to 424 kb/s and frequencies 

up to 6.68 MHz for the CU). Using our flexible tag 

platform, different RFID and NFC applications have been 

realized, such as proof-of-origin authentication to thwart 

against counterfeiting goods, or to generate location aware 

signatures to prove that a person or object has been at a 

certain location in a specific moment in time. Several press 

releases have been published that demonstrate these demo 

applications. 

D. Comparison with Related Work 

      Comparing our results with related work is rather 

difficult as only a handful of publications exist that deal 

with implementing security-enabled tags. Moreover, authors 

often give only a vague description of their designs 

regarding implementation details and provided functionality 

and presented tag designs for the ultrahigh frequency (UHF) 

range that contain an AES-128 implementation. The AES 

implementations used by them have an area requirement of 

about 6–7 kGEs. Moreover, the two tag designs cover only 

the baseband part, i.e., the digital circuit without EEPROM 

and analog front-end. A design that is better comparable to 

our work is the one of the authors presented an NFC tag, 

including EEPROM (4 kb, i.e., same size as ours), analog 

front-end and cryptographic unit with AES-128. Their NFC 

tag has a similar size (i.e., around 50 kGEs) than our design, 

but supports neither asymmetric cryptography (nor SHA-1) 

nor has it countermeasures against implementation attacks 

integrated. This illustrates the advantage of our design 

concept that provides not only high flexibility but also very 

low resource usage when considering all the implemented 

features. 
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V. CONCLUSION 

     In this paper, we presented a flexible NFC-tag 

architecture that provides enhanced security features using 

symmetric as well as asymmetric cryptography. As a main 

contribution, the work described an entire “real-world” 

RFID system, including all hardware components needed 

for a practical chip fabrication. During the work, several 

outcomes were obtained. First, our design showed that 

significant resources can be saved by applying a 

microcontroller-based architecture instead of using a finite-

state machine-based controlling. The reason lies in the fact 

that the controller can be simply reused by many hardware 

components, such as the CU or the RFID FL that would 

require more area when implemented as individual hardware 

modules. For example, AES encryption and decryption has 

been realized with an area overhead of only 2387 GEs, 

which is lower than existing low-area AES 

implementations.  

     Furthermore, SHA-1 needs only 889 GEs because of 

reusing available memory and microcontroller components 

of the entire system. Next to these outcomes, we found that 

it is favorable to reuse the microcontroller for RFID 

protocol handling, e.g., handling ISO/IEC 14443 layer 4. 

This can be completely realized as a micro program, which 

reduces further chip-area requirements while increasing 

flexibility and assembly-based implementation convenience. 

Finally, we practically proved our design by fabricating the 

system as a prototyping sample that demonstrates the 

feasibility of a full-blown RFID/NFC tag supporting 

ISO/IEC 14443A layer 1–4, NFC Forum Type-4 features 

(including NDEF support), a flexible (programmable) 8-b 

microcontroller, memory (RAM, ROM, and EEPROM), 

analog frontend, and strong cryptography (ECDSA and 

AES) for less than 50 kGEs. In the future, we plan to further 

analyze our design regarding enhanced implementation 

attacks, such as side channel analysis and fault attacks. 

Moreover, we plan to implement additional demo 

applications to verify the applicability of our tag in different 

security-related scenarios. 
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