

www.ijsetr.com

ISSN 2319-8885

Vol.04,Issue.01

January-2015,

Pages:0107-0113

 Copyright @ 2014 IJSETR. All rights reserved.

Security-Enabled Near-Field Communication Tag with Flexible

Architecture Supporting Asymmetric Cryptography

P. M. SANDHYA
1
, K. DHANUNJAYA

2

1
PG Scholar, Dept of ECE, Audishankara College of Engineering, Gudur, AP, India.

2
Assoc Prof, Dept of ECE, Audishankara College of Engineering, Gudur, AP, India.

Abstract: This paper presents the design and implementation of a complete near-field communication (NFC) tag system that

supports high-security features. The tag design contains all hardware modules required for a practical realization, which are:

analog 13.56-MHz radio-frequency identification (RFID) front-end, a digital part that includes a tiny (programmable) 8-b

microcontroller, a framing logic for data transmission, a memory unit, and a crypto unit. All components have been highly

optimized to meet the fierce requirements of passively powered RFID devices while providing a high level of flexibility and

security. The tag is fully compliant with the NFC Forum Type-4 specification and supports the ISO/IEC 14443A (layer 1–4)

communication protocol as well as block transmission according to ISO/IEC 7816. Its security features include support of

encryption and decryption using the Advanced Encryption Standard (AES-128), the generation of digital signatures using the

elliptic curve digital signature algorithm according to NIST P-192, and several countermeasures against common

implementation attacks, such as side-channel attacks and fault analyses. The chip has been fabricated in a 0.35-μm CMOS

process technology, and requires 49 999 GEs of chip area in total (including digital parts and analog front-end). Finally, we

present a practical realization of our design that can be powered passively by a conventional NFC enabled mobile phone for

realizing proof-of-origin applications to prevent counterfeiting of goods, or to provide location-aware services using RFID

technology.

Keywords: 8-B Microcontroller, Advanced Encryption Standard (AES), Elliptic Curve Cryptography, Elliptic Curve Digital

Signature Algorithm (ECDSA), Embedded System, Implementation Security, Near-Field Communication (NFC), Radio-

Frequency Identification (RFID), VLSI Design.

I. INTRODUCTION

 Radio-Frequency Identification (RFID) is a wireless

communication technique that has become increasingly

important in the last decade. Applications such as electronic

passports, logistics, animal identification, and car

immobilizers already make use of this technology. A

widely-used data-transmission standard based on RFID

technology is near-field communication (NFC). With the

integration of NFC functionality into the latest generation of

mobile phones (Samsung Galaxy Nexus, HTC Ruby) a

further spread of RFID technology is expected, paving the

way for new applications. These new applications will have

increased demand concerning the functionality provided by

the RFID system, especially in the context of security and

privacy. In a typical RFID system, a reader (e.g., a mobile

phone) and a tag communicate remotely by means of an RF

field. Most of the tags (more than 2 billion were sold in

2011) are so-called passive tags that also receive their power

supply from the RF field. A passive tag is basically a

microchip attached to an antenna. The simple design of

passive tags allows them to be produced at low cost, which

is important for applications where large numbers of tags

are required. Tags used in future RFID applications will

have to provide additional functionality, such as security

and data-storage features. Moreover, the design of the tags

must become more flexible to allow an easier adaption for

new applications. Achieving these goals for passive tags by

keeping the overhead in terms of power consumption

(passive operation) and silicon area (directly influences the

tag price) as low as possible is highly challenging.

 A lot of effort has been made by the research community

to allow cryptographic services on resource-constrained

RFID tags. The most prominent services are strong

authentication, using, for example, symmetric primitives

like the advanced encryption standard (AES) [2], [3] or

asymmetric primitives like elliptic curve cryptography

(ECC) [4], [5]. The integration of asymmetric schemes is an

especially big challenge for passive RFID tag designs as

they need more resources (computational effort, memory,

etc.) than symmetric schemes. When tags have to handle

additional functionality, their control complexity also

increases today’s RFID tags use state machines fixed in

hardware for handling their control tasks. However, this

approach is no longer practical and even inefficient when

the control complexity increases. Using a microcontroller

approach instead is favorable and provides much more

flexibility. Moreover, having a microcontroller on the tag

P. M. SANDHYA, K. DHANUNJAYA

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

for handling the control tasks also allows reusing it for

computing cryptographic operations.

 In this paper, we present the design and implementation

of a security-enabled NFC tag with flexible architecture.

The so-called CRYPTA tag (Cryptographic Protected Tags

for new RFID Applications) operates at a carrier frequency

of 13.56 MHz and works fully passively. We target a low-

area design that requires as little resources as possible such

that the tag production does not exceed the practical limits

of a possible commercial launch. The security-enabled NFC

tag has a size of less than 50 kGEs and supports strong

authentication features that are based on the AES-128

(symmetric cryptography) as well as on digital signing of

data using the elliptic curve digital signature algorithm

(ECDSA) over the prime field GF(p192) (asymmetric

cryptography). The low-area goals have been achieved by

heavily reusing existing hardware components, such as a

common 8-b microcontroller or a common memory. Passive

operation of the tag with conventional NFC-enabled mobile

phones allows realizing security related NFC/RFID

applications. Besides this, we also present a fully working

prototype sample of our design fabricated on a 0.35-μm

CMOS process technology. Our work contains multiple

contributions that relate to the field of secure tag design,

which are:

1. First low-resource RFID tag that supports asymmetric

cryptography;

2. First combined low-area implementation of ECDSA

and AES;

3. Flexible tag design based on a microcontroller for

protocol handling and steering of the cryptographic

module (including a design flow for program

development); 4) first low-resource RFID tag with

countermeasures against implementation attacks;

4. First prototype chip of a proof-of-origin tag;

5. Consideration of the whole tag life cycle including:

production, personalization, and user application.

 Among the contributions listed above, describing the

design of a complete system, including all hardware

components required for the practical chip fabrication of a

security-enabled tag (including EEPROM and analog front-

end which are often omitted in related work) is indeed the

most valuable one. Moreover, we provide details of the

design at a level that is hardly available in the published

literature. The remainder of this paper is organized as

follows. Section II provides Security Protocol Design. RFID

Tag Architecture in Section III, Implementation results and

a description of a prototyping sample are presented in

Section IV. Conclusions are drawn in Section V.

II. SECURITY PROTOCOL DESIGN

 In a security-enhanced RFID system, the level of security

does not only rely upon the strength of the used

cryptographic algorithms. The used protocols play a

decisive role whether an attacker can successfully break into

a system or not. Even if we use strong cryptographic

algorithms, we need to ensure that the protocol is also

secure. The protocol presented in this section allows the

authentication of an RFID tag to a reader using the

Advanced Encryption Standard (AES) as the cryptographic

primitive. In RFID systems, the limited computing power

and low-power constraints of the tags require special

considerations concerning the used protocols. In addition to

the available bandwidth for data transmission, attention

should be paid to the compatibility to existing standards like

the ISO/IEC 18000 or the Electronic Product Code (EPC).

Fig.1. Interleaved challenge-response protocol in RFID

systems.

 The protocol is based on the unilateral authentication

mechanism using random numbers presented. Integrating

the presented challenge response authentication protocol

into the ISO/IEC 18000 standard requires some additional

considerations. In addition to the mandatory commands,

which all tags must implement, custom commands can be

specified. The two commands, integrated for authentication,

are sending a challenge to the tag and requesting the

encrypted value. These commands extend the existing

standard although the basic functionality remains

unchanged. Due to the low-power restrictions, the internal

clock frequency of the RFID tag must be divided from 13.56

MHz to 100 kHz. The applied standard demands that a

response must follow 320μs after a request. Otherwise, the

tag has to stay quiet. This available time of 32 clock cycles

at a frequency of 100 kHz is not enough for encrypting a

challenge using the AES algorithm.

 The solution to this problem is to modify the protocol

as shown in Fig.1. The challenges and the responses to the

tags are interleaved to each other. Normally, there are a lot

of RFID tags to be authenticated in the environment of a

reader. After retrieving all unique IDs of the tags using the

inventory request and the anti-collision sequence, the reader

sends a challenge C1 to Tag1. This tag immediately starts

the encryption of the challenge without sending any

response. In the meanwhile, the reader sends further

challenges to the tags Tag2 and Tag3. They also start

encrypting their challenges after reception. After finishing

the encryption of EK (C1), Tag1 waits for the request to

send the encrypted value R1 back to the reader. When the

Security-Enabled Near-Field Communication Tag with Flexible Architecture Supporting Asymmetric Cryptography

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

reader has sent the three challenges, it sends a request for

receiving the response from Tag1. The received value R1 is

verified by encrypting the challenge C1 and comparing the

result with the received value. The two other unanswered

challenges are received using the same method. Then the

reader starts from the beginning authenticating all other tags

in the environment. This protocol was evaluated using high

level models of the RFID communication channel and is a

proof of concept for future research on authentication

protocols in RFID systems. This interleaving challenge-

response protocol has the advantage that each tag has at

least 18 ms (1800 clock cycles at a clock frequency of 100

kHz) time for encryption. A maximum of 50 tags can be

authenticated per second. If there are only few tags in the

range of a reader, the reader can decide to make breaks of at

least 18 ms instead of sending interleaved requests.

III. RFID TAG ARCHITECTURE

Fig.2. Architecture of an RFID tag.

 The architecture of a security-enhanced RFID tag is

sketched in Fig.2. It consists of four parts: analog frontend,

digital controller, EEPROM, and AES module. The analog

frontend is responsible for the power supply of the tag

which is transmitted from the reader to the tag. Other tasks

of the analog frontend are the modulation and demodulation

of data and the clock recovery from the carrier frequency.

The digital control unit is a finite state machine that handles

communication with the reader, implements the anti-

collision mechanism, and executes the commands in the

protocol. Furthermore, it allows read and write access to the

EEPROM and the AES module. The EEPROM stores tag-

specific data like the unique ID and the cryptographic key.

These data must be retained when the power supply is lost.

The security-enhanced RFID tag calculates strong

cryptographic authentication with an AES module which is

designed for low power requirements and low die-size

restrictions. The requirements concerning power

consumption and chip area and a description of the AES

module are presented in the following sections.

A. Requirements for RFID Tag Design

 In order to achieve a significant economic benefit from

using RFID systems, tags will need to be priced under US$

0.10 for simple identification tags and a little bit higher for

security-enhanced tags. Additionally to the aspect of low

cost, the environmental conditions play a decisive role

because contactless identification must work within a

distance of a few meters. The limiting factors thereby are

the available power supply for the tag and the signal

strength for modulation and demodulation. The available

power consumption for the digital part of the RFID tag

(digital controller and AES module) is amounting to 20 μA.

Estimating the current consumption of the digital controller

to 5 μA, 15 μA remain for the AES module which should

not exceed a chip area of 5,000 gates. Additionally, the

number of authenticated tags per second is about 50. As

presented in chapter 3, this leads to an available time slot of

18 ms for encrypting a 128-bit block of data. Our proposed

AES architecture, which is presented in section 3.2, encrypts

in about 1000 clock cycles. As a consequence, the clock

frequency of the AES module can be reduced fewer than

100 kHz. This allows reaching the ambitious power

consumption goal.

B. AES Architecture

 The Advanced Encryption Standard (AES) is a symmetric

encryption algorithm which was selected in 2001 by the

National Institute of Standards and Technology (NIST) as

the Federal Information Processing Standard FIPS-197. It

operates on blocks of data, the so called State, that have a

fixed size of 128 bits. The State is organized as a matrix of

four rows and four columns of bytes. The defined key

lengths are 128 bits, 192 bits, or 256 bits. Our

implementation uses a fixed key size of 128 bits. As most

symmetric ciphers, AES encrypts an input block by

applying the same round function. The ten round function

iterations alter the State by applying non-linear, linear, and

key-dependent transformations. Each transforms the 128-bit

State into a modified 128-bit State. Every byte of the State

matrix is affected by these transformations:

1. Sub Bytes substitutes each byte of the State. This

operation is non-linear. It is often implemented as a

table look-up. Sometimes the Sub Bytes transformation

is called S-Box operation.

2. Shift Rows rotates each row of the State by an offset.

The actual value of the offset equals the row index, e.g.

the first row is not rotated at all; the last row is rotated

three bytes to the left.

3. Mix Columns transforms columns of the State. It is a

multiplication by a constant polynomial in an extension

field of GF (28).

4. Add Round Key combines the 128-bit State with a 128-

bit round key by adding corresponding bits mod 2. This

transformation corresponds to a XOR-operation of the

State and the round key.

 The calculation of the 128-bit round keys works by

applying the Key Schedule function. The first round key is

equal to the cipher key. The computation of all other round

keys is based on the S-Box functionality and the R-con

operation. AES is a flexible algorithm for hardware

implementations. A large number of architectures are

possible to cover the full range of applications. AES

hardware implementations can be tailored for low die-size

demands in embedded systems or can be optimized for high

P. M. SANDHYA, K. DHANUNJAYA

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

throughput in server applications. This flexibility of the

AES algorithm was intended by its creators. They paid

attention that the algorithm can be implemented on systems

with different bus sizes. Efficient implementations are

possible on 8-bit, 32-bit, 64-bit, and 128-bit platforms.

Although many AES hardware architectures have been

proposed, none of the reported architectures meets the

requirements of an AES module for RFID tags regarding

low die-size and low power-consumption requirements.

Nearly all of these architectures have G-Bit throughput rates

as optimization goal. This is contrarious to our needs where

throughput is not of concern. Only a few published AES

architectures do not optimize throughput at any cost. To

name some: are FPGA implementations and ASIC

implementations of AES which care about hardware

efficiency. All these implementations do not unroll the AES

rounds for sake of silicon size. The more S-Boxes are used,

the less clock cycles are needed for encryption.

 The encryption-only AES processor of a 128-bit

architecture that utilizes 32 S-Boxes it is able to calculate

one AES round in a single clock cycle. The compact 32-bit

AES architecture is confident with four S-Boxes and takes

eight cycles for one round. The FGPA implementations of N

32-bit architectures they also use four S-Boxes. Four S-

Boxes suit a 32-bit architecture as each S-Box substitutes 8

bits. The Mix Columns operation and the Shift Rows

operation are 32-bit operations too because they transform

either four columns bytes or four row bytes of the AES

State. The Add Round Key operation (128-bit XOR) can

also be split-up into 32-bit operations. Implementing the

AES algorithm as a 32-bit architecture allows quartering the

hardware resources compared to a 128-bit architecture. This

comes at the expense of quadrupling the time for an AES

encryption. The lower amount of hardware resources has a

positive side effect on the power consumption: a quarter of

hardware resources consume only a quarter of power. This

is an important feature for wireless devices where the

average power consumption is an even more important

quality aspect than the overall energy needed to encrypt one

block.

 The overall energy consumption of a 32-bit architecture

might be worse than for 128-bit architectures. But RFID

tags offer neither the silicon space nor are the

electromagnetic field strong enough to power a 128-bit data

path. The power requirements for RFID tags are even too

restrictive to allow the operation of a 32-bit AES

implementation. Therefore, we decided to implement the

AES algorithm as an 8-bit architecture instead of a 32-bit

architecture. This novel approach for a hardware

implementation of the AES algorithm is motivated by two

reasons. First, an 8-bit architecture allows decreasing the

number of S-Boxes from four to one to save silicon

resources. Second, 8-bit operations consume significantly

less power than 32-bit operations do. A penalty of an 8-bit

architecture is the increased number of clock cycles for

encryption. In RFID authentication applications and

encryption lasting for 1000 cycles does not deteriorate the

authentication throughput when several tags are

authenticated concurrently.

 The architecture of the proposed 8-bit AES module is

depicted in Fig.3. It is presumably the smallest hardware

implementation of the AES algorithm.

Fig.3. Architecture of the AES module.

 The module consists basically of three parts: a

controller, RAM, and a data path. The controller

communicates with other modules on the tag to exchange

data and it sequences the ten rounds of an AES encryption.

Therefore, it addresses the RAM accordingly and generates

control signals for the data path. The RAM stores the 128-

bit State and a 128-bit round key. These 256 bits are

organized as 32 bytes to suit the intended 8-bit architecture.

32 bytes are the smallest possible memory configuration for

AES. The memory is single ported to ease silicon

implementation. Modified States and calculated round keys

overwrite previous values. As no spare memory is present

for storing intermediate values, the controller has to assure

that no State byte nor is a key byte overwritten if it is

needed again during encryption. The RAM implementation

is register based. It makes use of clock gating to minimize

power consumption. The data path of the AES module

contains combinational logic to calculate the AES

transformations Sub Bytes, Mix Columns, and Add Round

Key (see Fig.3). The Shift Rows transformation is

implemented by the controller. During the execution of Sub

Bytes the controller addresses the RAM such that the Shift

Rows operation is executed.

 The biggest part of the AES data path is the S-Box

which is used for the Sub Bytes operation. There are several

options for implementing an AES S-Box. The most obvious

option is a 256 × 8-bit ROM to implement the 8-bit table

lookup. Unfortunately, ROMs do not have good properties

regarding low-power design. A more appropriate option is

to calculate the substitution values using combinational

logic as presented. We adapted the proposed combinational

S-Box by omitting the decryption circuitry to suit our

encryption-only AES. One feature of this S-Box is that it

can be pipelined by inserting register stages. The S-Box

Security-Enabled Near-Field Communication Tag with Flexible Architecture Supporting Asymmetric Cryptography

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

makes use of one pipeline stage. This shortens the critical

path of the S-Box to seven XOR gates and lowers glitching

probability. Moreover, the pipeline register is used as

intermediate storage for a pipelined Sub Bytes operation:

during the substitution of one byte, the next byte is read

from the memory. The substituted byte is written to the

current read address. By choosing the read addresses

properly this procedure combines efficiently the Sub Bytes

and the Shift Rows operation. Shift Rows degrades to mere

addressing.

IV. IMPLEMENTATION RESULTS

 We have implemented our flexible tag platform in

VHDL and designed it toward low resource usage and low

power consumption, i.e., by applying clock gating and

operand isolation techniques. We implemented our design in

a 0.35-μm CMOS technology using a semi-custom design

flow with Cadence RTL Compiler as synthesis tool. Table I

shows the chip-area results in terms of gate equivalents

(GEs). In total, the chip needs 49 999 GEs, including analog

front-end, FL, microcontroller, bus arbiter, CU, and

memory. About 21% (10 763 GEs) is needed for the RFID

analog front-end and the FL. The microcontroller needs

around 19%, including instruction unit, ALU, PC, register

file (about 65 GEs per register), and program ROM. The

data path and the pattern sequencer of the CU take about

15% of the chip area, i.e., 7488 GEs (this number does not

include the ROM for ECDSA, AES, and SHA-1 program

and the needed constants). The highest amount of resources

is required for the memory, i.e., about 44% of the total area,

which equals to 22 027 GEs. The smallest component by far

is the bus arbiter (responsible for the AMBA bus),

consuming less than 1% of the total area.

TABLE I: AREA OF CHIP COMPONENTS

 The RFID front-end is clocked with 106, 212, or 448 kHz

according to the specified data rate. The CU can be clocked

at higher frequencies (0.847, 1.7, 3.3, or 6.68 MHz) in order

to improve the performance (configured in an EEPROM

register during tag personalization). At a frequency of 1.7

MHz, a digital signature can be generated within 505 ms,

i.e., 863 109 clock cycles. Hashing a message needs 2.15 ms

(3639 clock cycles) and AES needs 2.66 ms (no dummy

rounds) and 9.16 ms (ten dummy rounds applied) which

corresponds to 4529 and 15 577 clock cycles, respectively.

At the highest frequency of 6.68 MHz, the ECDSA module

needs 127 ms for generating a digital signature, which is

sufficient for most applications having stringent response-

time requirements.

TABLE II: DISTRIBUTION OF ROM CODE WITH

RESPECT TO TAG FUNCTIONALITY

A. Program ROM

 After developing and evaluating the program of the

microcontroller with the Java-based ISS described in the

assembler was used to transform the assembly code into

synthesizable VHDL ROM code. Proper operation of the

whole tag has been further verified through simulations with

Cadence NC Sim and through tests on an FPGA RFID tag

prototype that can communicate with different reader

devices. The final ROM code for the microcontroller

contains 2027 instructions (equals 4054 B of code).

Subroutine calls are used whenever possible to keep code

size small. Table II shows the distribution of the ROM code

with respect to tag functionality. Most instructions of the

ROM code, about 25%, are only used for handling the

block-transmission protocol. Around 15% of the

instructions are utilized for generic subroutines that provide

a basic set of functions that are reused multiple times (e.g.,

routines for accessing the AMBA bus). File management

and security features require about 22%. The program part

for steering the CU needs 766 instructions, corresponding to

about 38% of the total program ROM (24% for ECDSA-

P192, 11% for AES encryption/decryption, and 2.8% for

SHA-1).

 Most of the instructions stored in the ROM relate to

protocol handling, illustrating the high control complexity

of our tag design. However, the code used for steering the

CU also comprises mainly control instructions (e.g., for

executing micro-code patterns). Analyzing the code in the

ROM in detail shows that about 60% of the instructions are

control operations (CALL, RET, BNZ, MICRO). Only 10%

of the instructions relate to pure data-flow oriented

P. M. SANDHYA, K. DHANUNJAYA

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

operations between one or two registers (XOR, ADD,

ROT). The rest of the instructions belongs to operations

between constants in ROM and registers, e.g., immediate

load and compare instructions (MOVLF, XORLF).

B. Power Consumption

 Power simulations of the system were conducted with

the transistor-level SPICE simulator Synopsys Nanosim.

The simulation for the microcontroller shows a mean power

consumption of only about 10 μA for the 0.35-μm CMOS

process technology when powered with a supply voltage of

2V and using a clock frequency of 106 kHz, i.e., for a

default data rate of 106 kb/s. When higher data rates are

selected, the power consumption increases accordingly

(linearly with data rate). The CU, in contrast, consumes

about 485 μA as total mean current measured at 847 kHz,

i.e., the lowest frequency for the CU. More than 40% of that

power is due to the memory unit, which is heavily used

during scalar multiplication. The data path unit needs about

24%, the clock tree requires approximately 16%. Note that

the overall power consumption of the system is already

quite low due to low-power design techniques, such as clock

gating and operand isolation. It meets the power

requirements of most HF RFID systems and can be applied

in different RFID or NFC applications. However, the power

consumption value can be even further decreased by moving

toward a more-advanced CMOS process technology, e.g.,

0.18 or 0.13 μm. Using these technologies, the reading

distance becomes even better and can be applied, e.g., in

long range ISO/IEC 15 693 applications.

C. RFID-Tag Prototyping Sample

 We manufactured our RFID-tag implementation on a

multi-project wafer using the 0.35-μm CMOS process

technology C35b4 from AMS AG. For ease of testability, a

small serial debug interface has also been added that allows

detailed analysis of the analog front-end and the EEPROM

(e.g., reading/writing arbitrary values from/to EEPROM). A

photo of the manufactured chip is shown in Fig.4. After

production, the chip has been integrated into a ceramic

package and soldered on a small printed circuit board (PCB)

to allow tests with real-world RFID-reader devices.

Fig.4. Photo of the manufactured RFID tag-prototype

chip.

Fig.5. Proof-of-origin application using our RFID-tag

prototyping sample and the Google Nexus S mobile

phone.

 The PCB contains an antenna with four windings that is

connected to the analog front-end of the chip. An adjustable

capacitor is used for matching of antenna and analog front-

end. Fig.5 shows a photo of the PCB with the packaged

chip. We successfully tested the RFID-tag sample with

different commercially available RFID readers, including

mobile devices featuring NFC capabilities. Using the

Google Nexus S, for example, the tag can be powered fully

passively and can reliably communicate with the phone up

to 3 centimeters (at data rates up to 424 kb/s and frequencies

up to 6.68 MHz for the CU). Using our flexible tag

platform, different RFID and NFC applications have been

realized, such as proof-of-origin authentication to thwart

against counterfeiting goods, or to generate location aware

signatures to prove that a person or object has been at a

certain location in a specific moment in time. Several press

releases have been published that demonstrate these demo

applications.

D. Comparison with Related Work

 Comparing our results with related work is rather

difficult as only a handful of publications exist that deal

with implementing security-enabled tags. Moreover, authors

often give only a vague description of their designs

regarding implementation details and provided functionality

and presented tag designs for the ultrahigh frequency (UHF)

range that contain an AES-128 implementation. The AES

implementations used by them have an area requirement of

about 6–7 kGEs. Moreover, the two tag designs cover only

the baseband part, i.e., the digital circuit without EEPROM

and analog front-end. A design that is better comparable to

our work is the one of the authors presented an NFC tag,

including EEPROM (4 kb, i.e., same size as ours), analog

front-end and cryptographic unit with AES-128. Their NFC

tag has a similar size (i.e., around 50 kGEs) than our design,

but supports neither asymmetric cryptography (nor SHA-1)

nor has it countermeasures against implementation attacks

integrated. This illustrates the advantage of our design

concept that provides not only high flexibility but also very

low resource usage when considering all the implemented

features.

Security-Enabled Near-Field Communication Tag with Flexible Architecture Supporting Asymmetric Cryptography

International Journal of Scientific Engineering and Technology Research

Volume.04, IssueNo.01, January-2015, Pages: 0107-0113

V. CONCLUSION

 In this paper, we presented a flexible NFC-tag

architecture that provides enhanced security features using

symmetric as well as asymmetric cryptography. As a main

contribution, the work described an entire “real-world”

RFID system, including all hardware components needed

for a practical chip fabrication. During the work, several

outcomes were obtained. First, our design showed that

significant resources can be saved by applying a

microcontroller-based architecture instead of using a finite-

state machine-based controlling. The reason lies in the fact

that the controller can be simply reused by many hardware

components, such as the CU or the RFID FL that would

require more area when implemented as individual hardware

modules. For example, AES encryption and decryption has

been realized with an area overhead of only 2387 GEs,

which is lower than existing low-area AES

implementations.

 Furthermore, SHA-1 needs only 889 GEs because of

reusing available memory and microcontroller components

of the entire system. Next to these outcomes, we found that

it is favorable to reuse the microcontroller for RFID

protocol handling, e.g., handling ISO/IEC 14443 layer 4.

This can be completely realized as a micro program, which

reduces further chip-area requirements while increasing

flexibility and assembly-based implementation convenience.

Finally, we practically proved our design by fabricating the

system as a prototyping sample that demonstrates the

feasibility of a full-blown RFID/NFC tag supporting

ISO/IEC 14443A layer 1–4, NFC Forum Type-4 features

(including NDEF support), a flexible (programmable) 8-b

microcontroller, memory (RAM, ROM, and EEPROM),

analog frontend, and strong cryptography (ECDSA and

AES) for less than 50 kGEs. In the future, we plan to further

analyze our design regarding enhanced implementation

attacks, such as side channel analysis and fault attacks.

Moreover, we plan to implement additional demo

applications to verify the applicability of our tag in different

security-related scenarios.

VI. REFERENCES

[1] Thomas Plos, Michael Hutter, Martin Feldhofer,

Maksimiljan Stiglic, and Francesco Cavaliere, “Security-

Enabled Near-Field Communication Tag With Flexible

Architecture Supporting Asymmetric Cryptography”, IEEE

Transactions On Very Large Scale Integration (VLSI)

Systems, Vol. 21, No. 11, November 2013.

[2] M. Feldhofer, S. Dominikus, and J.Wolkerstorfer,

“Strong authentication for RFID systems using the AES

algorithm,” in Proc. CHES, vol. 3156. Aug. 2004, pp. 357–

370.

[3] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D.

Hämäläinen, “Design and implementation of low-area and

low-power AES encryption hardware core,” in Proc. 9th

EUROMICRO Conf. Digit. Syst. Design, Sep. 2006, pp.

577–583.

[4] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls,

and I. Verbauwhede, “Public-key cryptography for RFID-

tags,” in Proc. RFID sec, 2006, pp. 1–16.

[5] P. Tuyls and L. Batina, “RFID-tags for anti-

counterfeiting,” in Topics in Cryptology, vol. 3860, D. Point

cheval, Ed. New York: Springer-Verlag, 2006, pp. 115–131.

[6] NFC Forum Type 4 Tag Operations - Technical

Specification. (2007 Mar.) [Online]. Available:

http://www.nfc-forum.org/specs.

[7] Identification Cards - Contactless Integrated Circuit(s)

Cards – Proximity Cards - Part 3: Initialization and Anti-

collision, ISO/IEC Standard 14443-3, 2001.

[8] Identification Cards - Contactless Integrated Circuit(s)

Cards – Proximity Cards - Part 4: Transmission Protocol,

ISO/IEC Standard 14443-4, 2008.

[9] Information Technology - Identification Cards -

Integrated Circuit(s) Cards with Contacts - Part 4: Inter-

industry Commands for Interchange, ISO/IEC Standard

7816-4, 1995.

[10] National Institute of Standards and Technology. (2001,

Nov). FIPS-197: Advanced Encryption Standard,

Gaithersburg, MD [Online]. Available: http://www.itl.nist.

gov/fipspubs/.

[11] National Institute of Standards and Technology. (2009).

FIPS-186-3: Digital Signature Standard (DSS), [Online].

Available: http://www.itl.nist.gov/fipspubs/.

[12] T. Plos and M. Feldhofer, “Hardware implementation

of a flexible tag platform for passive RFID devices,” in

Proc. 14th Euro-micro Conf. Digit. Syst. Design, Aug.

2011, pp. 293–300.

