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Abstract: The main objective of this project is to design a recursive algorithm to obtain an orthogonal approximation of the 

DCT with half optimized complexity. This project presents a generalized recursive algorithm to obtain an orthogonal 

approximation of DCT where a pair of DCTs of length N/2 is used to derive approximate DCT of length N at the cost of N 

additions for input preprocessing. By using symmetries of basis vectors and perform recursive sparse matrix decomposition for 

deriving the proposed approximation algorithm. The proposed algorithm is highly scalable for hardware as well as software 

implementation of DCT of larger lengths, and they can be derived using the approximation of existing 8-point DCT to obtain 

approximate DCT of any power of two length, N>8.  Further, this project is enhanced by using Vedic sutras. A technique of 

binary digits, decimal number multiplication is performed, and it is different from the conventional method of multiplication like 

Add and Shift. It presents a systematic methodology for high speed and area efficient Vedic Multiplier based on Vedic 

Mathematics. The multiplier architecture is based on the URDHVA – TIRYAGBYAM sutra of Ancient Indian Vedic 

Mathematics. 
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I. INTRODUCTION 

   The goal of scalable compression methods is to generate a 

bit string that can be truncated at any desired point, while  

maintaining the best possible quality (e.g. peak signal-

tonoise ratio,PSNR) for the selected bit rate. The availability 

of such a scalable bit string considerably simplifies the 

system design by practically eliminating the need for a 

buffer control method when fitting the data to a certain 

given bit rate or memory size. In particular, the same single 

bit string simultaneously serves different channels with 

different bit rates, without the need to re-encode the original 

data. Thus, real-time adaptation to varying channel 

capacities (with application to the Internet or wireless 

communication channels) is very much simplified. The 

disadvantage of the well known scalable methods of [1, 2] is 

their complexity. It turns out, however, that complexity 

reductions are possible without major losses in performance. 

For example, the methods of [3, 4, 5] are based on the DCT 

instead of the wavelet transform, which reduces the 

complexity of the transform at the cost of a PSNR reduction 

of 0.6–1 dB [6]. A further complexity reduction for DCT-

based scalable compression was achieved in [5], by not 

making use of trees (similarly, scalable wavelet transform 

coding without the use of trees was proposed in [7]). An 

integrated module of contemporary video/image processing 

applications is constituted by transforming coding: It relies 

on the basis that pixels in the picture provide a certain level 

of correlation with the neighboring pixels and adjacent 

pixels in consecutive video frames show very high 

correlation in a video transmission system.  

     Consequently, these correlations can be developed to 

approximate the value of a pixel from its individual 

neighbors. A transformation is, therefore, described to plot 

this spatial, i.e. correlated information into transformed i.e. 

uncorrelated coefficients. Obviously, the transformation 

should utilize the fact that the information content of an 

individual pixel is moderately small i.e. to a large extent 

visual contribution of a pixel can be estimated using its 

neighbors. The importance of this paper is to prepare a plan 

to fix a 8-point Discrete Cosine Transform (DCT) and 

Inverse DCT with the speed of processing by scaling and 

approximation of the co-efficient by choosing the proper 

method of selection of these coefficients. It could be 

completed by increasing of glided point esteem with contain 

the outline architecture is designed in Verilog Hardware 

Description Language code using Modelsim, Altera and 

XILINX ISE devices. The system is showing and combined 

using RTL (Register Transfer Level) reflection. In this 

novel, an 8 × 8 point DCT and IDCT DSP Processor is 

performed by using Loeffler factorization. The paper gives 

the data about how to abstain from coasting point by using 

the DCT/IDCT operations. In this model only 11 

duplications are used for implantation. Here the executed 

configuration is used for the further developments. The 

pipelined design can likewise be added to DCT and IDCT. 
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The displayed design of processor is combined with the 

several things which are used as a single processor for the 

number of applications. The elements of N-point DCT 

matrix are given by 

                                                        (1) 

Where 0 ≤ i, j ≤ N-1, ϵ0 =0.707 and ϵi=1 for I > 0.the 

equation is referred to as exact DCT in order to distinguish 

it from approximated forms of DCT. For k ϵ [0,(N/2)-1] and 

i=2k, for any even value of N then equation becomes 

                                    (2) 

Since ϵ2k =ϵk the equation can be written as  

                                       (3) 

Hence, the cosine transforms kernel on the right-hand side 

corresponds to N/2 -point DCT. Therefore, the first N/2 

elements of even rows of the DCT matrix of size N × N 

corresponds to the N/2 -point DCT matrix. Accordingly, the 

recursive decomposition of CN can be performed. Using the 

even/odd symmetries of its row vectors, DCT matrix CN  can 

be represented by the following matrix product   

                                               (4) 

Where TN is a block sparse matrix expressed by 

                                                                (5) 

Where 0N/2 is the (N/2× N/2) zero matrixes. Block sub-

matrix SN/2 consists of odd rows of the first N/2 columns 

of 2CN . Where MN
per

 is a permutation matrix expressed by  

                                     (6) 

Where 0
1,

N

2

 a row of N/2 is is zeros and PN−1,N/2
(i)

 is a matrix 

defined by its row vectors as         

       (7) 

Where IN

2

(i/2) is the (i/2)th row vector of the (N/2 × N/2) 

identity matrix. Finally, the last matrix  MN
add  is defined by 

                                                (8) 

Where JN/2 is an (N/2 × N/2) matrix having all ones on the 

anti-diagonal and zeros elsewhere. 

 

     To decrease the computational complication of Discrete 

Cosine Transform, the computational cost of matrices 

offered is requisite to be measurable. Given that, it does not 

involve any calculation or logic operation, and requires 

accompaniments and subtractions, they make a payment 

very little to the whole arithmetic complexity and cannot be 

condensed more. So, for declining the computational 

complexity of N-point DCT, we necessitate to estimate TN 

in the equation. Let  and  denote the approximation matrices 

of CN/2 and SN/2, respectively. To find these approximated 

sub matrices we take the smallest size of the DCT matrix to 

terminate the approximation procedure to 8, because four-

point DCT and two-point DCT can be implemented with 

adders simply. Consequently, a good approximation of CN, 

where N is an integral power of two, for N ≥ 8, leads to 

proper approximations of C8 and S8. For an approximation 

of C8 we can choose the 8-point DCT. Since that presents 

the best exchange stuck between the number of necessary 

arithmetic operators and quality of the reconstructed image. 

 

A. C8 Implementation 
    The basic computational block of algorithms for the 

existing DCT approximation, The block diagram of the 

computation of DCT based on C8 is shown in above figure, 

for a given input sequence {X (n)}, n ϵ [0, N-1]. The 

approximate DCCT coefficients are obtained by F= . X
T
.  

Can be approximated by two units for the computation of  

are used along with an input adder unit and output 

permutation unit. And computation of 32-point DCT could 

be obtained by combining a pair of 16-point DCTs with an 

input adder block and output permutation block. To assess 

the computational complexity of existing N-point 

approximate DCT, we need to determine the computational 

cost of matrices, the approximate 8-point DCT involves 22 

additions. Since permutation matrix has no computational 

cost and addition matrix requires additions for N additions 

for N-point DCT, the overall arithmetic complexity of 16-

point, 32-point, and 64-point DCT approximations are 60, 

152, and 368 additions, respectively. More generally, the 

arithmetic complexity of N-point DCT is equal to N (log2 

N-(1/4)) additions as shown in Fig.1. 

 
Fig.1. Signal Flow Graph (sfg) of (c8 ). 

    Moreover, since the structures for the calculation of 

Discrete Cosine Transform of dissimilar lengths are normal 

and scalable, the calculation time for N-point DCT 

coefficients can be determined to be log2(N)TA ,where TA is 

the extra-time. The method requires the least number of 

augmentations, and does not need any shift functions. Make 

a note of that shift process does not involve any 
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combinational components, and need simply as rewiring 

during hardware execution. Other than it has oblique giving 

to the hardware complication because shift add operations 

direct to increase in bit-width which leads to higher 

hardware density of arithmetic units which go after the shift-

add operation. Also, I note that all measured estimate 

methods involve extensively less computational complexity 

over that of the exact DCT algorithms.  

B. Existing Reconfigurable Architecture 

       Discrete Cosine Transform (DCT) of dissimilar lengths 

such as 32, 16 are needed to be used in video coding 

applications. So, a known Discrete Cosine Transform 

structural design have to be potentially reused for the DCT 

of altered lengths instead of using different designs for 

different lengths. I suggest here such reconfigurable DCT 

designs which could be reused for the calculation of DCT of 

different lengths. The reconfigurable structural design for 

the functioning of approximated 16-point DCT is shown in 

below Fig.2. 

     
Fig.2. Block diagram of approximation of DCT for n=16. 

    It consists of three computing units, that is 2 eight-point 

approximated Discrete Cosine Transform units and a 

sixteen-point input adder unit that generates a(i) and b(i),I 

ϵ[1:7] . The input to the initial 8-point DCT approximation 

unit is fed through 8 MUXes that select either a(0), a(1), 

a(2) ,a(3) ,a(4) ,a(5) a(6), a(7) or X(0),X(1),X(2),X(3),X(4), 

X(5),X(6),X(7) depending on whether it is used for 16-point 

DCT calculation or 8-point DCT calculation. Similarly, the 

input to the second 8-point DCT unit is fed through 8 

MUXes that select either b(0),b(1),b(2), b(3),b(4),b(5), 

b(6),b(7) or X(8),X(9),X(10),X(11),X(12),X(13), X(14) 

,X(15), based on whether it is used for sixteen-point DCT 

calculation or eight-point DCT calculation. The unit uses 14 

MUXes to select and re-order the output depending on the 

size of the selected DCT.sel16 is used as control input of the 

MUXes to select inputs and to perform permutation. 

Specifically, sel16=1 enables the computation of 16-point 

DCT and enables the computation of a pair of 8-point DCTs 

in parallel as shown in Fig.3. Consequently, the architecture 

allows the calculation of a 16-point DCT or two 8-point 

DCTs in parallel. A reconfigurable design for the 

computation of 32-, 16-, and 8-point DCTs is presented. 

 
Fig.3. Reconfigurable Architecture for DCT of lengths 

n=8 & 16. 

   It performs the computation of a 32-point Discrete Cosine 

Transform or 2 sixteen-point Discrete Cosine Transforms in 

parallel or 4 eight-point Discrete Cosine Transforms in 

parallel. The structural design is poised of 32-point input 

adder unit, 2 sixteen-point input adder units, and 4 eight-

point DCT units. The re-configurability is accomplished by 

3 control blocks unruffled of 64 2:1 MUXes along with 30 

3:1 MUXes. The primary control block decides whether the 

Discrete Cosine Transform size is of 32 or lower. If, the 

selection of input data has ended for the 32-point Discrete 

Cosine Transform, or else, for the Discrete Cosine 

Transforms of lower lengths. The second control block 

decides whether the Discrete Cosine Transform size is 

higher than 8. 

 

II. DCT USING VEDIC MULTIPLIER 

      The hardware, structural design of 2×2, 4x4 and 8x8 bit 

Vedic multi-player components are shown in the lower 

sections. At this point, “URDHVA-TIRYAGBHYAM” 

(perpendicularly and diagonally) sutra is used to suggest 

such design for the multiplication of two binary 

information. The attractiveness of Vedic multiplier is that 

here partial product generation and additions are done 

simultaneously. Therefore, it is well modified to equivalent 

processing. The attribute make it more beautiful for binary 

multiplications. This in turn decline, delay, which is the 

main inspiration following this work. A Vedic Multiplier for 

2x2 bit Module, The process is explained below for two, 2 

bit numbers  X and  Y  where  X  =  a1a0  and  Y  =  b1b0.  

Initially, the slightest significant bits are multiplied which 

gives the least significant bit of the ultimate product 

(vertical). Then, the Least Significant Bit of the 

multiplicand is multiplied with the next superior bit  of  the  

multiplier  and  added  to,  the  product  of  Least Significant 

Bit  of  multiplier and a next higher bit of the multiplicand 

(crosswise) as shown in Fig.4.  The sun produces second bit 

of the final product and the carry is further with the partial 
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product get hold of by multiplying the most significant bits 

to give the sum and carry. The sum is the third equivalent 

bit and carry becomes the fourth bit of the final product.    

 
Fig.4. Block diagram 2×2 Vedic multiplier. 

 The  2X2  Vedic  multiplier  unit  is  realized  with  4 input 

AND gates and 2 half-adders which is shown in  its  block.  

It  is  originate  that  the  hardware  structural design  of  2x2  

bit  Vedic  multiplier unit is  same  as  the  hardware  

architecture  of  2x2 the enhancemental  Array  Multiplier. 

Therefore, it is over and done with that multiplication of two  

bit  double  numbers  by  Vedic  sutra  does  not  ended  

important to effect  in  the enhancement  of  the multiplier’s 

effectiveness. Extremely state that the whole delay is only 

two-half adder delays, later than final bit products are 

produced, which is alike to Array multiplier. So we switch 

more than the implementation of 4x4 bit Vedic multiplier 

which uses the 2x2 bit multiplier as a fundamental building 

block. The identification method can be extensive for input 

bits 4 & 8. But for larger number of bits in input, little 

alteration is necessary. The 4x4 bit Vedic multiplier unit is 

designed by four 2x2 bit Vedic multiplier units. Let’s 

examine 4x4 calculations, say X= A3A2A A0 and Y= B3 

B2 B1 B0. The output line for the multiplication unit is - S7 

S6 S5 S4 S3 S2 S1 S0. Let’s split X and Y into two parts, 

say A3A2 & A1A0 for X and B3B2 & B1B0 for Y. With 

the basic unit of Vedic multiplication, taking 2 bits at a time 

and using 2 bit multiplier units, we can have the subsequent 

design for calculation as displayed in below fig.5. Model 

representation for 4x4 bit Vedic Multiplication has each 

block as shown top is 2x2 bit Vedic multiplier unit. 

 
Fig.5. A sample representation of 4-bit Vedic multiplication.  

     Primary 2x2 bit multiplier unit inputs are A1A0 and 

B1B0. The final block is 2x2 bit multiplier unit with inputs 

A1A2 and B3B2.The center one display 2 2x2 bit multiplier 

units with inputs A3A2 & B1B0 and A1A0 & B3 B2. 

Consequently the ending result of multiplication, which is 

eight bits, S7, S6 S5 S4 S3 S2 S1 S0. To obtain the last 

product (S7 S6 S5 S4 S3 S2 S1 S0), four 2x2 bit multiplier 

units and three 4-bit Ripple-Carry Adder units are required. 

The planned Vedic multiplier unit can be second-hand to 

reduce delay as shown in Fig.6. In the early hours novel 

speak about Vedic multiplier units are based on array 

multiplier designs. On the other hand, I projected a new 

architecture, which is proficient in terms of speediness 

useful to reduce delay. Grippingly, an 8x8 Vedic multiplier 

segment is developed easily with four 4x4 multiplier units.  

Fig.6. Block diagram for 4-bit Vedic multiplication. 

III. RESULTS 

 Results of this paper is as shown in bellow Fig.7. 

 
Fig.7.Results. 

IV. CONCLUSION 

    In this paper, presented a discrete cosine transform by 

employing Vedic multiplier architecture of URDHVA - 

TIRYAGBYAM sutras. Whereas the existing design is 

modified by multiplier architecture using carry look-ahead 

adder for a reduced amount of propagation delay, with a 

reduction of power consumption and area efficient by 

reducing the number of components. The key idea was to 

provide an increase of processing speed and save the time in 

high throughput applications. 
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