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Abstract: Top-k processing in uncertain databases is semantically and computationally different from traditional top-k 

processing. We introduce new probabilistic formulations for top-k queries. When data ambiguity cannot be reduced 

algorithmically, Crowd sourcing proves a viable approach, which consists in posting tasks to humans and harnessing their 

judgment for improving the confidence about data values or relationships. We propose efficient algorithms to compute these 

vectors. We also extend the semantics and algorithms to the scenario of score ties, which is not dealt with in the previous work in 

the area. Several offline and online approaches for addressing questions to a crowd are defined and contrasted on both synthetic 

and real data sets, with the aim of minimizing the crowd interactions necessary to find the real ordering of the result set.  Our 

experiments show the efficiency of our techniques under different data distributions with orders of magnitude improvement over 

na¨ıve materialization of possible worlds. 
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I. INTRODUCTION 

     It is well-known that crowd sourcing works best when 

tasks can be broken down into very simple pieces. An entire 

schema matching may be too large a grain for a crowd each 

individual may have small quibbles with a proposed 

matching, so that a simple binary question on the correctness 

of matching may get mostly negative answers with each user 

declaring it less than perfect [1]. On the other hand, asking 

open-ended questions is not recommended for a crowd, 

because it may be difficult to pull together a schema 

matching from multiple suggestions [2].In the well-known 

class of applications commonly referred to as “top-K 

queries” [3], the objective is to find the best K objects 

matching the user’s information need, formulated as a 

scoring function over the objects’ attribute values. If both the 

data and the scoring function are deterministic, the best K 

objects can be univocally determined and totally ordered so 

as to produce a single ranked result set [4].The goal of this 

paper is to define and compare task selection policies for 

uncertainty reduction via crowd sourcing, with emphasis on 

the case of top-K queries. The expected residual uncertainty 

of the result, possibly leading to a unique ordering of the top 

K results. The main contributions of the paper are as follows 

[5]: 

1. We formalize a framework for uncertain top-K query 

processing, adapt to its existing techniques for 

computing the possible orderings, and introduce a 

procedure for removing unsuitable orderings, given new 

knowledge on the relative order of the objects [6]. 

2. We define and contrast several measures of uncertainty, 

either agnostic dependent on the structure of the 

orderings. 

3. We formulate the problem of Uncertainty Resolution 

(UR) in the context of top-K query processing over 

uncertain data with crowd support.The UR problem 

amounts to identifying the shortest sequence of 

questions that, when submitted to the crowd, ensures the 

convergence to a unique, or at least more determinate 

[7],  

4. We introduce two families of heuristics for question 

selection: offline, where all questions are selected prior 

to interacting with the crowd, and online, where crowd 

answers and question selection can intermix.  

5. We propose an algorithm that avoids the materialization 

of the entire space of possible orderings to achieve even 

faster results. 

6. We conduct an extensive experimental evaluation of 

several algorithms on both synthetic and real datasets, 

and with a real crowd, in order to assess their 

performance and scalability[8]. 

 

II. SYSTEM OVERVIEW 

      We give an overview of the architecture for task driven 

crowd-selection. We illustrate the architecture of our task-

driven crowd-selection system [9]. The core component of 

our system is crowd manager. The main functionalities of 

crowd manager are latent skill inference for workers and 

choose the right crowd for given crowdsourced tasks. The 
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crowd model is stored in the crowd databases which support 

crowd insertion, crowd update and crowd retrieval. The red 

lines show the process of latent skill inference for workers as 

well as build latent category space for tasks, which is based 

on resolved tasks with feedback scores. The crowd databases 

are then updated. Given a coming crowdsourced task, the 

crowd manager first projects it into the built latent category 

space. Next, the crowd manager returns the workers online 

as the candidate crowd for this task [10]. The crowd manager 

then ranks the workers who are skilled in this task. The top 

ranked workers are chosen for solving the task. After that, 

the task dispatcher distributes this task to the selected 

workers. Finally, the system keeps collect the answers return 

by the selected workers. In summary, our task-driven crowd-

selection system can automatically ask the right crowd to 

process the crowdsourced tasks. The system is able to 

incrementally project the coming tasks to the existing latent 

category space such that the workers can be chosen in the 

real time. In the following sections, we present the idea and 

the methods of implementing this task-driven crowd-

selection system [11]. The system overview is depicted in 

figure 1. 

 
Fig 1. System overview. 

 

III. RELATED WORK 

     Many works in the crowd sourcing area have studied how 

to exploit a crowd to obtain reliable results in uncertain 

scenarios. In [12], binary questions are used to label nodes in 

a directed acyclic graph, showing that an accurate question 

selection improves upon a random one. Similarly [12] and 

[13] aim to reduce the time and budget used for labeling 

objects in a set by means of an appropriate question 

selection. Instead, [14] proposes an online question selection 

approach for finding the next most convenient question so as 

to identify the highest ranked object in a set. A query 

language where questions are asked to humans and 

algorithm is described in [15]; humans are assumed to 

always answer correctly, and thus each question is asked 

once. All these works do not apply to a top-K setting and 

cannot be directly compared to our work. Active learning is 

a form of supervised machine learning, in which a learning 

algorithm is able to interact with the workers (or some other 

information source) to obtain the desired outputs at new data 

points [16]. In particular, [17, 18] proposed active learning 

methods specially designed for crowd-sourced databases. 

Our work is essentially different from active learning in two 

perspectives: (1) the role of workers in active learning is to 

improve the learning algorithm in this paper the involvement 

of workers is to reduce the uncertainty of given matching. 

(2) The uncertainty of answers are usually assumed to be 

given before generating any questions; in this paper, the 

uncertainty of answers has to be considered after the answers 

are received, since we cannot anticipate which workers 

would answer our questions. To our best knowledge, there is 

no algorithm in the field of active learning can be trivially 

applied to our problem. 

 

IV. TREE OF POSSIBLE ORDERINGS (TPO) 

      Building the TPO A method for constructing a TPO T 

was proposed in [19]. Let T be a table containing the tuples 

with uncertain score {t1,...,tN }. In order to build the tree, a 

dummy root node is created. Then, the sources (i.e., tuples ti 

2 T such that there does not exist any tj 2 T such that lj>ui) 

are extracted from T and attached as children of the root. 

Next, each extracted source is used as a root for computing 

the next level of the tree. The asymptotic time complexity of 

building the tree up to level K is O(KN2). Finally, the 

probability Pr(!) of any ordering ! in the tree can be 

computed, e.g., with the generating functions technique [20] 

with asymptotic time complexity O(N2), or via Monte Carlo 

sampling. In particular[21], when considering two topples ti 

and tj in the full TPO T (i.e., when K = N), each path in T 

agrees either with ti tj or with ti 6 tj. Thus, T can be 

partitioned into two sub-trees. 

 

A. Algorithm 

   Online question selection strategies an online algorithm 

has the ability to determine the i-th question based on the 

answers collected for all the previously asked i 1 questions. 

Differently from the offline case, the output of an online 

algorithm is treated as a sequence and not as a set, since each 

received answer may influence the choice of the next 

question, and thus the order matters.  Best-first search online 

algorithm (A⇤on).  An online UR algorithm can be obtained 

by iteratively applying A⇤off B times. At the i-

 B, A⇤on identifies the i-th question q⇤ i in its output and 

asks it to the worker, thus obtaining the answer ans!(q⇤ i ). 

Question q⇤ i is simply the first element of the sequence 

Q⇤ i returned by A⇤off for the TPO T hans!(q⇤ 1 

),...,ans!(q⇤ i1)i K with budget (Bi+1), where ! is the real 

ordering and q⇤ 1 ,...,q⇤ i1 are the previously selected 

questions (initially, A⇤off is applied on TK with budget B 

and the first question in its output is chosen as q⇤ 1). 

Intuitively, each step chooses the most promising question 

q⇤ i within the horizon of the remaining B i + 1 questions to 

be asked based on the current knowledge of !. Note that, as 

new answers arrive, the next most promising questions might 

no longer coincide with the rest of the previously planned 

sequence Q⇤i . Being based on A⇤off, A⇤on is costly. 

Thus, we also consider a simpler but more efficient online 

algorithm [22]. 
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Algorithm 1: Top-1 online algorithm (T1on) 

 Input: TPO TK, Budget B  

Output: Optimal sequence of questions Q⇤ 

Environment: Underlying real ordering!  

1) Q⇤:= ; 

2) For i := 1 to B  

3) If |TK| = 1 then break;  

4) q⇤ i := arg minq2QK\Q⇤Rhqi(TK);  

5) Q⇤ := Q⇤hq⇤ i i;  

 6) Ask q⇤ i to the crowd and collect the answer ans!(q⇤ i )  

7) TK := T ans!(q⇤ i ) K ;  

8) return Q⇤; 

 

    The time and scan depth of Indep U-Topk, respectively, 

while the time and scan depth of IndepU-kRanks, 

respectively with k values up to 1000. The best case for 

algorithm is to find highly probable tuples frequently in the 

scoreranked stream. The counter scenario applies to 

uexp(0.2) whose mean value forces confidence to decay 

relatively fast leading to small number of highly probable 

tuples. IndepU-Topk execution time is under 10 seconds for 

all data distributions, and it consumes a maximum of 15,000 

tuples for k=1000 under exponentially-skewed distribution. 

The maximum scan depth of IndepU-kRanks is 4800 tuple, 

however the execution time is generally larger. This can be 

attributed to the design of algorithm where bookkeeping and 

candidate maintenance operations are more extensive in 

IndepU-kRanks. 

 
Fig 2. IndepU-Topk time   Figure 3. IndepU-Topk depth. 

 

    We generated bivariate gaussian data over score and 

confidence, and controlled correlation coefficient by 

adjusting bivariate covariance matrix. Positive correlations 

result in large savings since in this case high scored tuples 

are attributed with high confidence, which allows reducing 

the number of needed-to-see tuples to answer uncertain top–

k queries. 

V. CONCLUSIONS 

    We have introduced Uncertainty Resolution (UR), which 

is the problem of identifying the minimal set of questions to 

be submitted to a crowd in order to reduce the uncertainty in 

the ordering of top-K query results. We formulated the 

problem as a state space search, Our processing framework 

leverages existing storage and query processing techniques 

and can be easily integrated with existing DBMSs. The 

proposed algorithms have been shown to work also with 

non-uniform tuple score distributions and with noisy crowds. 

Much lower CPU times are possible with the online 

algorithm, with slightly lower quality. These trends are 

further validated on the real datasets. We then develop 

variation algorithm that transforms the probabilistic 

inference into a standard optimization problem, which can be 

solved efficiently. We also devise an online crowd-selection 

algorithm that projects the coming tasks into the existing 

latent category space and choose the highly skilled workers 

for the tasks. We validate the performance of our algorithm 

based on the data collected from three well-known crowd 

sourcing applications: Quora, Yahoo ! Answer and Stack 

Overflow. 

VI. FUTURE WORK 

    We will try to fold this into a more realistic and more 

complete model of worker error rates. We have also ignored 

more complex worker incentives, including boredom and 

thoughtless answer selection, as being standard across crowd 

sourcing platforms. We propose to provide the score 

distribution of top-k vectors and c-Typical-Topk answers to 

applications and devise efficient algorithms to cope with the 

computational challenges. We also extend the work to score 

ties. Experimental results verify our motivation and our 

approaches 
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