

www.ijsetr.com

ISSN 2319-8885

Vol.06,Issue.26

August-2017,

Pages:5109-5112

 Copyright @ 2017 IJSETR. All rights reserved.

Minimizing Crowd using Top-K Query Processing over Uncertain Data
KAMMA PUJITHA

1
, OM PRAKASH SAMANTRAY

2
, T. SUBBA REDDY

3

1
PG Scholar, Dept of CSE, Narasaraopeta Engineering College, JNTUK, Kakinada, AP, India.

2
Associate Professor, Dept of CSE, Narasaraopeta Engineering College, JNTUK, Kakinada, AP, India,

Email: Om.prakash02420@gmail.com.
3
Assistant Professor, Dept of CSE, Narasaraopeta Engineering College, JNTUK, Kakinada, AP, India,

Email: subbareddynec@gmail.com.

Abstract: Top-k processing in uncertain databases is semantically and computationally different from traditional top-k

processing. We introduce new probabilistic formulations for top-k queries. When data ambiguity cannot be reduced

algorithmically, Crowd sourcing proves a viable approach, which consists in posting tasks to humans and harnessing their

judgment for improving the confidence about data values or relationships. We propose efficient algorithms to compute these

vectors. We also extend the semantics and algorithms to the scenario of score ties, which is not dealt with in the previous work in

the area. Several offline and online approaches for addressing questions to a crowd are defined and contrasted on both synthetic

and real data sets, with the aim of minimizing the crowd interactions necessary to find the real ordering of the result set. Our

experiments show the efficiency of our techniques under different data distributions with orders of magnitude improvement over

na¨ıve materialization of possible worlds.

Keywords: Top-K, Distribution, Uncertain Data, Typical. User/Machine Systems, Query Processing.

I. INTRODUCTION

 It is well-known that crowd sourcing works best when

tasks can be broken down into very simple pieces. An entire

schema matching may be too large a grain for a crowd each

individual may have small quibbles with a proposed

matching, so that a simple binary question on the correctness

of matching may get mostly negative answers with each user

declaring it less than perfect [1]. On the other hand, asking

open-ended questions is not recommended for a crowd,

because it may be difficult to pull together a schema

matching from multiple suggestions [2].In the well-known

class of applications commonly referred to as “top-K

queries” [3], the objective is to find the best K objects

matching the user’s information need, formulated as a

scoring function over the objects’ attribute values. If both the

data and the scoring function are deterministic, the best K

objects can be univocally determined and totally ordered so

as to produce a single ranked result set [4].The goal of this

paper is to define and compare task selection policies for

uncertainty reduction via crowd sourcing, with emphasis on

the case of top-K queries. The expected residual uncertainty

of the result, possibly leading to a unique ordering of the top

K results. The main contributions of the paper are as follows

[5]:

1. We formalize a framework for uncertain top-K query

processing, adapt to its existing techniques for

computing the possible orderings, and introduce a

procedure for removing unsuitable orderings, given new

knowledge on the relative order of the objects [6].

2. We define and contrast several measures of uncertainty,

either agnostic dependent on the structure of the

orderings.

3. We formulate the problem of Uncertainty Resolution

(UR) in the context of top-K query processing over

uncertain data with crowd support.The UR problem

amounts to identifying the shortest sequence of

questions that, when submitted to the crowd, ensures the

convergence to a unique, or at least more determinate

[7],

4. We introduce two families of heuristics for question

selection: offline, where all questions are selected prior

to interacting with the crowd, and online, where crowd

answers and question selection can intermix.

5. We propose an algorithm that avoids the materialization

of the entire space of possible orderings to achieve even

faster results.

6. We conduct an extensive experimental evaluation of

several algorithms on both synthetic and real datasets,

and with a real crowd, in order to assess their

performance and scalability[8].

II. SYSTEM OVERVIEW

 We give an overview of the architecture for task driven

crowd-selection. We illustrate the architecture of our task-

driven crowd-selection system [9]. The core component of

our system is crowd manager. The main functionalities of

crowd manager are latent skill inference for workers and

choose the right crowd for given crowdsourced tasks. The

KAMMA PUJITHA, OM PRAKASH SAMANTRAY, T. SUBBA REDDY

International Journal of Scientific Engineering and Technology Research

Volume.06, IssueNo.26, August-2017, Pages: 5109-5112

crowd model is stored in the crowd databases which support

crowd insertion, crowd update and crowd retrieval. The red

lines show the process of latent skill inference for workers as

well as build latent category space for tasks, which is based

on resolved tasks with feedback scores. The crowd databases

are then updated. Given a coming crowdsourced task, the

crowd manager first projects it into the built latent category

space. Next, the crowd manager returns the workers online

as the candidate crowd for this task [10]. The crowd manager

then ranks the workers who are skilled in this task. The top

ranked workers are chosen for solving the task. After that,

the task dispatcher distributes this task to the selected

workers. Finally, the system keeps collect the answers return

by the selected workers. In summary, our task-driven crowd-

selection system can automatically ask the right crowd to

process the crowdsourced tasks. The system is able to

incrementally project the coming tasks to the existing latent

category space such that the workers can be chosen in the

real time. In the following sections, we present the idea and

the methods of implementing this task-driven crowd-

selection system [11]. The system overview is depicted in

figure 1.

Fig 1. System overview.

III. RELATED WORK

 Many works in the crowd sourcing area have studied how

to exploit a crowd to obtain reliable results in uncertain

scenarios. In [12], binary questions are used to label nodes in

a directed acyclic graph, showing that an accurate question

selection improves upon a random one. Similarly [12] and

[13] aim to reduce the time and budget used for labeling

objects in a set by means of an appropriate question

selection. Instead, [14] proposes an online question selection

approach for finding the next most convenient question so as

to identify the highest ranked object in a set. A query

language where questions are asked to humans and

algorithm is described in [15]; humans are assumed to

always answer correctly, and thus each question is asked

once. All these works do not apply to a top-K setting and

cannot be directly compared to our work. Active learning is

a form of supervised machine learning, in which a learning

algorithm is able to interact with the workers (or some other

information source) to obtain the desired outputs at new data

points [16]. In particular, [17, 18] proposed active learning

methods specially designed for crowd-sourced databases.

Our work is essentially different from active learning in two

perspectives: (1) the role of workers in active learning is to

improve the learning algorithm in this paper the involvement

of workers is to reduce the uncertainty of given matching.

(2) The uncertainty of answers are usually assumed to be

given before generating any questions; in this paper, the

uncertainty of answers has to be considered after the answers

are received, since we cannot anticipate which workers

would answer our questions. To our best knowledge, there is

no algorithm in the field of active learning can be trivially

applied to our problem.

IV. TREE OF POSSIBLE ORDERINGS (TPO)

 Building the TPO A method for constructing a TPO T

was proposed in [19]. Let T be a table containing the tuples

with uncertain score {t1,...,tN }. In order to build the tree, a

dummy root node is created. Then, the sources (i.e., tuples ti

2 T such that there does not exist any tj 2 T such that lj>ui)

are extracted from T and attached as children of the root.

Next, each extracted source is used as a root for computing

the next level of the tree. The asymptotic time complexity of

building the tree up to level K is O(KN2). Finally, the

probability Pr(!) of any ordering ! in the tree can be

computed, e.g., with the generating functions technique [20]

with asymptotic time complexity O(N2), or via Monte Carlo

sampling. In particular[21], when considering two topples ti

and tj in the full TPO T (i.e., when K = N), each path in T

agrees either with ti tj or with ti 6 tj. Thus, T can be

partitioned into two sub-trees.

A. Algorithm

 Online question selection strategies an online algorithm

has the ability to determine the i-th question based on the

answers collected for all the previously asked i 1 questions.

Differently from the offline case, the output of an online

algorithm is treated as a sequence and not as a set, since each

received answer may influence the choice of the next

question, and thus the order matters. Best-first search online

algorithm (A⇤on). An online UR algorithm can be obtained

by iteratively applying A⇤off B times. At the i-

 B, A⇤on identifies the i-th question q⇤ i in its output and

asks it to the worker, thus obtaining the answer ans!(q⇤ i).

Question q⇤ i is simply the first element of the sequence

Q⇤ i returned by A⇤off for the TPO T hans!(q⇤ 1

),...,ans!(q⇤ i1)i K with budget (Bi+1), where ! is the real

ordering and q⇤ 1 ,...,q⇤ i1 are the previously selected

questions (initially, A⇤off is applied on TK with budget B

and the first question in its output is chosen as q⇤ 1).

Intuitively, each step chooses the most promising question

q⇤ i within the horizon of the remaining B i + 1 questions to

be asked based on the current knowledge of !. Note that, as

new answers arrive, the next most promising questions might

no longer coincide with the rest of the previously planned

sequence Q⇤i . Being based on A⇤off, A⇤on is costly.

Thus, we also consider a simpler but more efficient online

algorithm [22].

Minimizing Crowd using Top-K Query Processing over Uncertain Data

International Journal of Scientific Engineering and Technology Research

Volume.06, IssueNo.26, August-2017, Pages: 5109-5112

Algorithm 1: Top-1 online algorithm (T1on)

 Input: TPO TK, Budget B

Output: Optimal sequence of questions Q⇤

Environment: Underlying real ordering!

1) Q⇤:= ;

2) For i := 1 to B

3) If |TK| = 1 then break;

4) q⇤ i := arg minq2QK\Q⇤Rhqi(TK);

5) Q⇤ := Q⇤hq⇤ i i;

 6) Ask q⇤ i to the crowd and collect the answer ans!(q⇤ i)

7) TK := T ans!(q⇤ i) K ;

8) return Q⇤;

 The time and scan depth of Indep U-Topk, respectively,

while the time and scan depth of IndepU-kRanks,

respectively with k values up to 1000. The best case for

algorithm is to find highly probable tuples frequently in the

scoreranked stream. The counter scenario applies to

uexp(0.2) whose mean value forces confidence to decay

relatively fast leading to small number of highly probable

tuples. IndepU-Topk execution time is under 10 seconds for

all data distributions, and it consumes a maximum of 15,000

tuples for k=1000 under exponentially-skewed distribution.

The maximum scan depth of IndepU-kRanks is 4800 tuple,

however the execution time is generally larger. This can be

attributed to the design of algorithm where bookkeeping and

candidate maintenance operations are more extensive in

IndepU-kRanks.

Fig 2. IndepU-Topk time Figure 3. IndepU-Topk depth.

 We generated bivariate gaussian data over score and

confidence, and controlled correlation coefficient by

adjusting bivariate covariance matrix. Positive correlations

result in large savings since in this case high scored tuples

are attributed with high confidence, which allows reducing

the number of needed-to-see tuples to answer uncertain top–

k queries.

V. CONCLUSIONS

 We have introduced Uncertainty Resolution (UR), which

is the problem of identifying the minimal set of questions to

be submitted to a crowd in order to reduce the uncertainty in

the ordering of top-K query results. We formulated the

problem as a state space search, Our processing framework

leverages existing storage and query processing techniques

and can be easily integrated with existing DBMSs. The

proposed algorithms have been shown to work also with

non-uniform tuple score distributions and with noisy crowds.

Much lower CPU times are possible with the online

algorithm, with slightly lower quality. These trends are

further validated on the real datasets. We then develop

variation algorithm that transforms the probabilistic

inference into a standard optimization problem, which can be

solved efficiently. We also devise an online crowd-selection

algorithm that projects the coming tasks into the existing

latent category space and choose the highly skilled workers

for the tasks. We validate the performance of our algorithm

based on the data collected from three well-known crowd

sourcing applications: Quora, Yahoo ! Answer and Stack

Overflow.

VI. FUTURE WORK

 We will try to fold this into a more realistic and more

complete model of worker error rates. We have also ignored

more complex worker incentives, including boredom and

thoughtless answer selection, as being standard across crowd

sourcing platforms. We propose to provide the score

distribution of top-k vectors and c-Typical-Topk answers to

applications and devise efficient algorithms to cope with the

computational challenges. We also extend the work to score

ties. Experimental results verify our motivation and our

approaches

VII. REFERENCES

[1] M. Allahbakhsh et al. Quality control in crowdsourcing

systems: Issues and directions. IEEE Internet Comp., 17(2):

76– 81, 2013.

[2] A. Doan, R. Ramakrishnan, and A. Y. Halevy.

Crowdsourcing systems on the world-wide web. Commun.

ACM, 54(4):86–96, 2011.

[3] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration

with uncertainty. VLDB J., 18(2):469–500, 2009.

[4] D. Barbara, H. Garcia-Molina, and D. Porter. The

management of probabilistic data. IEEE Transactions on

Knowledge and Data Engineering, 4(5):487–502, 1992.

[5] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom.

Uldbs: Databases with uncertainty and lineage. In VLDB,

2006.

[6] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

probabilistic queries over imprecise data. In SIGMOD, 2003

[7] J. Guo, S. Xu, S. Bao, and Y. Yu. Tapping on the

potential of q&a community by recommending answer

providers. In CIKM, pages 921–930. ACM, 2008.

[8] S. Guo, A. Parameswaran, and H. Garcia-Molina. So

who won?: dynamic max discovery with the crowd. In

Proceedings of SIGMOD, pages 385–396. ACM, 2012

[9] T. Hofmann. Probabilistic latent semantic indexing. In

SIGIR, pages 50–57. ACM, 1999.

[10] H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov.

Answering planning queries with the crowd.

[11] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M.

Zhang. Cdas: a crowdsourcing data analytics system.

Proceedings of PVLDB, 5(10):1040–1051, 2012.

[12] A. Parameswaran et al. Human-assisted graph search:

It’s okay to ask questions. PVLDB, 4(5):267–278, 2011.

[13] A. Parameswaran et al. Crowdscreen: Algorithms for

filtering data with humans. In SIGMOD ’12, pages 361–372,

2012.

[14] A. Parameswaran and N. Polyzotis. Answering queries

using humans, algorithms and databases. In CIDR ’11.

KAMMA PUJITHA, OM PRAKASH SAMANTRAY, T. SUBBA REDDY

International Journal of Scientific Engineering and Technology Research

Volume.06, IssueNo.26, August-2017, Pages: 5109-5112

[15] V. Polychronopoulos et al. Human-powered top-k lists.

In WebDB, pages 25–30, 2013.

[16] A. G. Parameswaran and N. Polyzotis. Answering

queries using humans, algorithms and databases. In CIDR,

pages 160–166, 2011.

[17] A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina,

N. Polyzotis, and J. Widom. Human-assisted graph search:

it’s okay to ask questions. PVLDB, 4(5):267–278, 2011.

[18] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,

and ´ R. Fagin. Translating web data. In VLDB, pages 598–

609, 2002.

[19] M. Soliman and I. Ilyas. Ranking with uncertain scores.

In ICDE ’09., pages 317 –328, 2009.

[20] P. Venetis et al. Max algorithms in crowdsourcing

environments. In WWW, pages 989–998, 2012.

[21] P. Venetis and H. Garcia-Molina. Quality control for

comparison microtasks. In International Workshop on

Crowdsourcing and Data Mining, pages 15–21. ACM, 2012.

[22] S. E. Whang et al. Question selection for crowd entity

resolution. VLDB, 2013.

[23] H. Yu et al. Enabling ad-hoc ranking for data retrieval.

ICDE, 2005.

Author's Profile:

K.Pujitha studying M.Tech (CSE) in

Narasaraopeta Engineering College, NRT.

Completed B.Tech (CSE) in Narasaraopeta

Engineering College, NRT.

Om Prakash Samantray is presently working as Associate

Professor in dept. of CSE in Narasaraopeta Engineering

College. Email id:Om.prakash02420@gmail.com.

Subba Reddy is presently working as Assistant Professor in

dept. of CSE in Narasaraopeta Engineering College, Email

id:subbareddynec@gmail.com.

